Skip to main content
Log in

Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules’ absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Areas ES, Bronsato BJdS, Pereira TM, Guedes GP, Miranda FdS, Kümmerle AE et al (2017) Novel Co(III) complexes containing fluorescent coumarin-N-acylhydrazone hybrid ligands: synthesis, crystal structures, solution studies and DFT calculations. Spectrochim Acta Part A. https://doi.org/10.1016/j.saa.2017.06.031

    Article  Google Scholar 

  2. Aarjane M, Slassi S, Amine A (2021) Novel series of N-acylhydrazone based on acridone: synthesis, conformational and theoretical studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.129079

    Article  Google Scholar 

  3. Rollas S, Küçükgüzel SG (2007) Biological activities of hydrazone derivatives. Molecules 12(8):1910–1939. https://doi.org/10.3390/12081910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdelrahman MA, Salama I, Gomaa MS, Elaasser MM, Abdel-Aziz MM, Soliman DH (2017) Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2017.07.004

    Article  PubMed  Google Scholar 

  5. Moldovan CM, Oniga O, Parvu A, Tiperciuc B, Verite P, Pîrnău A et al (2011) Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur J Med Chem 46(2):526–534. https://doi.org/10.1016/j.ejmech.2010.11.032

    Article  CAS  PubMed  Google Scholar 

  6. Kareem HS, Ariffin A, Nordin N, Heidelberg T, Abdul-Aziz A, Kong KW et al (2015) Correlation of antioxidant activities with theoretical studies for new hydrazone compounds bearing a 3, 4, 5-trimethoxy benzyl moiety. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2015.09.016

    Article  PubMed  Google Scholar 

  7. Vavříková E, Polanc S, Kočevar M, Horváti K, Bősze S, Stolaříková J et al (2011) New fluorine-containing hydrazones active against MDR-tuberculosis. Eur J Med Chem 46(10):4937–4945. https://doi.org/10.1016/j.ejmech.2011.07.052

    Article  CAS  PubMed  Google Scholar 

  8. Hernández P, Cabrera M, Lavaggi ML, Celano L, Tiscornia I, da Costa TR et al (2012) Discovery of new orally effective analgesic and anti-inflammatory hybrid furoxanyl N-acylhydrazone derivatives. Bioorg Med Chem 20(6):2158–2171. https://doi.org/10.1016/j.bmc.2012.01.034

    Article  CAS  PubMed  Google Scholar 

  9. Carradori S, Secci D, Bolasco A, Rivanera D, Mari E, Zicari A et al (2013) Synthesis and cytotoxicity of novel (thiazol-2-yl) hydrazine derivatives as promising anti-Candida agents. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2013.04.042

    Article  PubMed  Google Scholar 

  10. Wang G, Chen M, Wang J, Peng Y, Li L, Xie Z et al (2017) Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 27(13):2957–2961. https://doi.org/10.1016/j.bmcl.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  11. Nagender P, Kumar RN, Reddy GM, Swaroop DK, Poornachandra Y, Kumar CG et al (2016) Synthesis of novel hydrazone and azole functionalized pyrazolo [3, 4-b] pyridine derivatives as promising anticancer agents. Bioorg Med Chem Lett 26(18):4427–4432. https://doi.org/10.1016/j.bmcl.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  12. Li Z-H, Yang D-X, Geng P-F, Zhang J, Wei H-M, Hu B et al (2016) Design, synthesis and biological evaluation of [1, 2, 3] triazolo [4, 5-d] pyrimidine derivatives possessing a hydrazone moiety as antiproliferative agents. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2016.10.022

    Article  PubMed  PubMed Central  Google Scholar 

  13. Celebioglu HU, Erden Y, Hamurcu F, Taslimi P, Şentürk OS, Özmen ÜÖ et al (2021) Cytotoxic effects, carbonic anhydrase isoenzymes, α-glycosidase and acetylcholinesterase inhibitory properties, and molecular docking studies of heteroatom-containing sulfonyl hydrazone derivatives. J Biomol Struct Dyn 39(15):5539–5550. https://doi.org/10.1080/07391102.2020.1792345

    Article  CAS  PubMed  Google Scholar 

  14. Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ (2022) New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem 27(2):271–281. https://doi.org/10.1007/s00775-022-01932-9

    Article  CAS  PubMed  Google Scholar 

  15. Kucukoglu K, Gul HI, Taslimi P, Gulcin I, Supuran CT (2019) Investigation of inhibitory properties of some hydrazone compounds on hCA I, hCA II and AChE enzymes. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.02.008

    Article  PubMed  Google Scholar 

  16. Todeschini AR, de Miranda ALP, da Silva KCM, Parrini SC, Barreiro EJ (1998) Synthesis and evaluation of analgesic, antiinflammatory and antiplatelet properties of new 2-pyridylarylhydrazone derivatives. Eur J Med Chem 33(3):189–199. https://doi.org/10.1016/S0223-5234(98)80008-1

    Article  CAS  Google Scholar 

  17. Dimmock JR, Vashishtha SC, Stables JP (2000) Anticonvulsant properties of various acetylhydrazones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds. Eur J Med Chem 35(2):241–248. https://doi.org/10.1016/S0223-5234(00)00123-9

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B, Zhao YF, Zhai X, Fan WJ, Ren JL, Wu CF et al (2012) Design, synthesis and antiproliferative activities of diaryl urea derivatives bearing N-acylhydrazone moiety. Chin Chem Lett 23(8):915–918. https://doi.org/10.1016/j.cclet.2012.06.009

    Article  CAS  Google Scholar 

  19. Buu-Hoï NP, Xuong ND, Nam NH, Binon F, Royer R (1953) Tuberculostatic hydrazides and their derivatives. J Chem Soc 278:1358–1364. https://doi.org/10.1039/JR9530001358

    Article  Google Scholar 

  20. Roman G (2015) Mannich bases in medicinal chemistry and drug design. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2014.10.076

    Article  PubMed  Google Scholar 

  21. Martin-Escolano R, Moreno-Viguri E, Santivanez-Veliz M, Martin-Montes A, Medina-Carmona E, Paucar R et al (2018) Second generation of Mannich base-type derivatives with in vivo activity against Trypanosoma cruzi. J Med Chem 61(13):5643–5663. https://doi.org/10.1021/acs.jmedchem.8b00468

    Article  CAS  PubMed  Google Scholar 

  22. Racane L, Tralic-Kulenovic V, Fiser-Jakic L (2001) Synthesis of bis-substituted amidinobenzothiazoles as potential anti-HIV agents. Heterocycles 55(11):2085–2098. https://doi.org/10.3987/COM-01-9305

    Article  CAS  Google Scholar 

  23. Kashiyama E, Hutchinson I, Chua M-S, Stinson SF, Phillips LR, Kaur G et al (1999) Antitumor benzothiazoles. 8. Synthesis, metabolic formation, and biological properties of the C- and N-oxidation products of antitumor 2-(4-aminophenyl) benzothiazoles. J Med Chem 42(20):4172–4184. https://doi.org/10.1021/jm990104o

    Article  CAS  PubMed  Google Scholar 

  24. Gul HI, Yerdelen KO, Gul M, Das U, Pandit B, Li PK et al (2007) Synthesis of 4′-hydroxy-3′-piperidinomethylchalcone derivatives and their cytotoxicity against PC-3 cell lines. Arch Pharm (Weinheim, Ger) 340(4):195–201. https://doi.org/10.1002/ardp.200600072

    Article  CAS  Google Scholar 

  25. Reddy MVB, Su C-R, Chiou W-F, Liu Y-N, Chen RY-H, Bastow KF et al (2008) Design, synthesis, and biological evaluation of Mannich bases of heterocyclic chalcone analogs as cytotoxic agents. Bioorg Med Chem 16(15):7358–7370. https://doi.org/10.1016/j.bmc.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  26. Dimmock J, Kumar P (1997) Anticancer and cytotoxic properties of Mannich bases. Curr Med Chem 4(1):1–22

    Article  CAS  Google Scholar 

  27. Tugrak M, Gul HI, Sakagami H, Mete E (2017) Synthesis and anticancer properties of mono Mannich bases containing vanillin moiety. Med Chem Res 26(7):1528–1534. https://doi.org/10.1007/s00044-017-1833-x

    Article  CAS  Google Scholar 

  28. Gul HI, Calis U, Vepsalainen J (2004) Synthesis of some mono-Mannich bases and corresponding azine derivatives and evaluation of their anticonvulsant activity. Arzneim-Forsch 54(07):359–364. https://doi.org/10.1055/s-0031-1296984

    Article  CAS  Google Scholar 

  29. Chen G, Shan W, Wu Y, Ren L, Dong J, Ji Z (2005) Synthesis and anti-inflammatory activity of resveratrol analogs. Chem Pharm Bull 53(12):1587–1590. https://doi.org/10.1248/cpb.53.1587

    Article  CAS  Google Scholar 

  30. Malhotra M, Sharma R, Sanduja M, Kumar R, Jain J, Deep A (2012) Synthesis, characterization and evaluation of Mannich bases as potent antifungal and hydrogen peroxide scavenging agents. Acta Pol Pharm Drug Res 69:355–361

    CAS  Google Scholar 

  31. Yamali C, Tugrak M, Gul HI, Tanc M, Supuran CT (2016) The inhibitory effects of phenolic Mannich bases on carbonic anhydrase I and II isoenzymes. J Enzyme Inhib Med Chem 31(6):1678–1681. https://doi.org/10.3109/14756366.2015.1126715

    Article  CAS  PubMed  Google Scholar 

  32. Sieger GM, Barringer WC, Krueger JE (1971) Mannich derivatives of medicinals. 2. Derivatives of some carbonic anhydrase inhibitors. J Med Chem 14(5):458–460. https://doi.org/10.1021/jm00287a027

    Article  CAS  PubMed  Google Scholar 

  33. Marvadi SK, Krishna VS, Sriram D, Kantevari S (2019) Synthesis of novel morpholine, thiomorpholine and N-substituted piperazine coupled 2-(thiophen-2-yl) dihydroquinolines as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2018.12.043

    Article  PubMed  Google Scholar 

  34. Özil M, Parlak C, Baltaş N (2018) A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2017.12.019

    Article  PubMed  Google Scholar 

  35. Patil P, Madhavachary R, Kurpiewska K, Kalinowska-Tłuścik J, Dömling A (2017) De novo assembly of highly substituted morpholines and piperazines. Org Lett 19(3):642–645. https://doi.org/10.1021/acs.orglett.6b03807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scott JD, Williams RM (2002) Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev 102(5):1669–1730. https://doi.org/10.1021/cr010212u

    Article  CAS  PubMed  Google Scholar 

  37. Hyndman D, Bauman DR, Heredia VV, Penning TM (2003) The aldo-keto reductase superfamily homepage. Chem-Biol Interact. https://doi.org/10.1016/S0009-2797(02)00193-X

    Article  PubMed  Google Scholar 

  38. Tammali R, Reddy A, Srivastava SK, Ramana KV (2011) Inhibition of aldose reductase prevents angiogenesis in vitro and in vivo. Angiogenesis 14(2):209–221. https://doi.org/10.1007/s10456-011-9206-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R (2021) Aldose reductase: an emerging target for development of interventions for diabetic cardiovascular complications. Front Endocrin. https://doi.org/10.3389/fendo.2021.636267

    Article  Google Scholar 

  40. Ramos RJ, Albersen M, Vringer E, Bosma M, Zwakenberg S, Zwartkruis F et al (2019) Discovery of pyridoxal reductase activity as part of human vitamin B6 metabolism. Biochim Biophys Acta, General Sub 1863:1088–1097. https://doi.org/10.1016/j.bbagen.2019.03.019

    Article  CAS  Google Scholar 

  41. Quattrini L, La Motta C (2019) Aldose reductase inhibitors: 2013-present. Expert Opin Ther Pat 29(3):199–213. https://doi.org/10.1080/13543776.2019.1582646

    Article  CAS  PubMed  Google Scholar 

  42. Lj Y (2018) Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Anim Models Exp Med 1(1):7–13. https://doi.org/10.1002/ame2.12001

    Article  Google Scholar 

  43. Langer HT, Afzal S, Kempa S, Spuler S (2020) Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-58213-1

    Article  CAS  Google Scholar 

  44. Lu Q, Hao M, Wu W, Zhang N, Isaac AT, Yin J et al (2018) Antidiabetic cataract effects of GbE, rutin and quercetin are mediated by the inhibition of oxidative stress and polyol pathway. Acta Biochim Pol 65(1):35–41. https://doi.org/10.18388/abp.2016_1387

    Article  CAS  PubMed  Google Scholar 

  45. Chung SS, Ho EC, Lam KS, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephro 14(suppl 3):S233–S236

    Article  CAS  Google Scholar 

  46. Oates PJ (2002) Polyol pathway and diabetic peripheral neuropathy. Int Rev Neuro. https://doi.org/10.1016/S0074-7742(02)50082-9

    Article  Google Scholar 

  47. Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50(1):21–34

    CAS  PubMed  Google Scholar 

  48. Wojnar W, Zych M, Borymski S, Kaczmarczyk-Sedlak I (2020) Chrysin reduces oxidative stress but does not affect polyol pathway in the lenses of type 1 diabetic rats. Antioxidants 9(2):160. https://doi.org/10.3390/antiox9020160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oyama T, Miyasita Y, Watanabe H, Shirai K (2006) The role of polyol pathway in high glucose-induced endothelial cell damages. Diabet Res Clin Practic 73(3):227–234. https://doi.org/10.1016/j.diabres.2006.02.010

    Article  CAS  Google Scholar 

  50. Li Q, Hwang YC, Ananthakrishnan R, Oates PJ, Guberski D, Ramasamy R (2008) Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts. Cardiovasc Diabet 7(1):1–11. https://doi.org/10.1186/1475-2840-7-33

    Article  CAS  Google Scholar 

  51. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Demir Y, Işık M, Gülçin İ, Beydemir Ş (2017) Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J Biochem Mol Toxicol 31(9):e21936. https://doi.org/10.1002/jbt.21935

    Article  CAS  Google Scholar 

  53. Taslimi P, Aslan HE, Demir Y, Oztaskin N, Maraş A, Gulçin İ et al (2018) Diarylmethanon, bromophenol and diarylmethane compounds: discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.08.004

    Article  PubMed  Google Scholar 

  54. Listvan V, Listvan V, Shekel A (2002) Synthesis of cholesteryl esters of heterocyclic analogs of cinnamic acid and hetaroyloxycinnamic acids by the Wittig reaction. Chem Heterocycl Compd 38(12):1480–1483. https://doi.org/10.1023/A:1022693427914

    Article  CAS  Google Scholar 

  55. Sharghi H, Razavi SF, Aberi M, Tavakoli F, Shekouhy M (2020) The Co2+ complex of [7-hydroxy-4-methyl-8-coumarinyl] glycine as a nanocatalyst for the synthesis and biological evaluation of new mannich bases of benzimidazoles and benzothiazoles. ChemistrySelect 5(9):2662–2671. https://doi.org/10.1002/slct.201904700

    Article  CAS  Google Scholar 

  56. Khadilkar B, Jaisinghani H, Saraf M, Desai S (2001) Synthesis and pharmacological studies of new derivatives of dimethyl 1,4-dihydro-2,6-dimethyl-3, 5-pyridinedicarboxylate. Indian J Chem 40B:82–86

    CAS  Google Scholar 

  57. Sengupta A (1977) Synthesis of substituted piperazinyl semicarbazides and thiosemicarbazides as possible acetylcholinesterase (AChE) inhibitors. J Indian Chem Soc 54(10):961–964

    CAS  Google Scholar 

  58. Wu C, Anderson CE, Bui H, Gao D, Holland GW, Kassir J, et al (2004) Pyridine, pyrimidine, quinoline, quinazoline, and naphthalene urotensin-ii receptor antagonists. Google Patents

  59. Di Braccio M, Grossi G, Alfei S, Ballabeni V, Tognolini M, Flammini L et al (2014) 1, 8-Naphthyridines IX. Potent anti-inflammatory and/or analgesic activity of a new group of substituted 5-amino [1, 2, 4] triazolo [4, 3-a][1, 8] naphthyridine-6-carboxamides, of some their Mannich base derivatives and of one novel substituted 5-amino-10-oxo-10H-pyrimido [1, 2-a][1, 8] naphthyridine-6-carboxamide derivative. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2014.08.069

    Article  PubMed  Google Scholar 

  60. Türkeş C, Demir Y, Beydemir Ş (2019) Anti-diabetic properties of calcium channel blockers: inhibition effects on aldose reductase enzyme activity. Appl Biochem Biotechnol 189(1):318–329. https://doi.org/10.1007/s12010-019-03009-x

    Article  CAS  PubMed  Google Scholar 

  61. Tokalı FS, Demir Y, Demircioğlu İH, Türkeş C, Kalay E, Şendil K et al (2021) Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4 (3H)-one derivatives as potential aldose reductase inhibitors. Drug Dev Res. https://doi.org/10.1002/ddr.21887

    Article  PubMed  Google Scholar 

  62. Sever B, Altıntop MD, Demir Y, Türkeş C, Özbaş K, Çiftçi GA et al (2021) A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chem. https://doi.org/10.1515/chem-2021-0032

    Article  Google Scholar 

  63. Akdağ M, Özçelik AB, Demir Y, Beydemir Ş (2022) Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.132675

    Article  Google Scholar 

  64. Sever B, Altıntop MD, Demir Y, Pekdoğan M, Çiftçi GA, Beydemir Ş et al (2021) An extensive research on aldose reductase inhibitory effects of new 4H–1, 2, 4-triazole derivatives. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.129446

    Article  Google Scholar 

  65. Sever B, Altıntop MD, Demir Y, Çiftçi GA, Beydemir Ş, Özdemir A (2020) Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2020.104110

    Article  PubMed  Google Scholar 

  66. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of a protein isolated from red cell membranes. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  67. Demir Y, Köksal Z (2020) Some sulfonamides as aldose reductase inhibitors: Therapeutic approach in diabetes. Arch Physiol Biochem. https://doi.org/10.1080/13813455.2020.1742166

    Article  PubMed  Google Scholar 

  68. Demir Y, Özaslan MS, Duran HE, Küfrevioğlu Öİ, Beydemir Ş (2019) Inhibition effects of quinones on aldose reductase: antidiabetic properties. Environ Toxicol Pharmacol. https://doi.org/10.1016/j.etap.2019.103195

    Article  PubMed  Google Scholar 

  69. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  70. Demir Y, Duran HE, Durmaz L, Taslimi P, Beydemir Ş, Gulçin İ (2020) The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: a perspective for metabolic disorders. Appl Biochem Biotechnol 190(2):437–447. https://doi.org/10.1007/s12010-019-03099-7

    Article  CAS  PubMed  Google Scholar 

  71. Demir Y, Taslimi P, Koçyiğit ÜM, Akkuş M, Özaslan MS, Duran HE et al (2020) Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies. Arch Pharm (Weinheim, Ger) 353(12):2000118. https://doi.org/10.1002/ardp.202000118

    Article  CAS  Google Scholar 

  72. Demir Y, Durmaz L, Taslimi P, Gulçin İ (2019) Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol Appl Biochem 66(5):781–786. https://doi.org/10.1002/bab.1781

    Article  CAS  PubMed  Google Scholar 

  73. Erdemir F, Celepci DB, Aktaş A, Gök Y, Kaya R, Taslimi P et al (2019) Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: synthesis, characterization, crystal structure and bioactivity properties. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.103134

    Article  PubMed  Google Scholar 

  74. Sever B, Altıntop MD, Demir Y, Yılmaz N, Çiftçi GA, Beydemir Ş et al (2021) Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem-Biol Interact. https://doi.org/10.1016/j.cbi.2021.109576

    Article  PubMed  Google Scholar 

  75. Demir Y (2020) Naphthoquinones, benzoquinones, and anthraquinones: molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev Res 81(5):628–636. https://doi.org/10.1002/ddr.21667

    Article  CAS  PubMed  Google Scholar 

  76. Demir Y (2019) The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J Pharm Pharmacol 71(10):1576–1583. https://doi.org/10.1111/jphp.13144

    Article  CAS  PubMed  Google Scholar 

  77. Askin S, Tahtaci H, Türkeş C, Demir Y, Ece A, Çiftçi GA et al (2021) Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo [2, 1-b][1, 3, 4] thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105009

    Article  PubMed  Google Scholar 

  78. Türkeş C (2019) Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein Pept Lett 26(6):392–402. https://doi.org/10.2174/0929866526666190226162225

    Article  CAS  PubMed  Google Scholar 

  79. Beydemir Ş, Türkeş C, Yalçın A (2021) Gadolinium-based contrast agents: in vitro paraoxonase 1 inhibition, in silico studies. Drug Chem Toxicol 44(5):508–517. https://doi.org/10.1080/01480545.2019.1620266

    Article  CAS  PubMed  Google Scholar 

  80. Türkeş C (2019) A potential risk factor for paraoxonase 1: in silico and in-vitro analysis of the biological activity of proton-pump inhibitors. J Pharm Pharmacol 71(10):1553–1564. https://doi.org/10.1111/jphp.13141

    Article  CAS  PubMed  Google Scholar 

  81. Işık M, Demir Y, Durgun M, Türkeş C, Necip A, Beydemir Ş (2020) Molecular docking and investigation of 4-(benzylideneamino)-and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chem Pap. https://doi.org/10.1007/s11696-019-00988-3

    Article  Google Scholar 

  82. Akocak S, Taslimi P, Lolak N, Işık M, Durgun M, Budak Y et al (2021) Synthesis, characterization, and inhibition study of novel substituted phenylureido sulfaguanidine derivatives as α-glycosidase and cholinesterase inhibitors. Chem Biodivers 18(4):e2000958. https://doi.org/10.1002/cbdv.202000958

    Article  CAS  PubMed  Google Scholar 

  83. Istrefi Q, Türkeş C, Arslan M, Demir Y, Nixha AR, Beydemir Ş et al (2020) Sulfonamides incorporating ketene N, S-acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim, Ger) 353(6):e1900383. https://doi.org/10.1002/ardp.201900383

    Article  CAS  Google Scholar 

  84. Bochevarov AD, Harder E, Hughes TF, Greenwood JR, Braden DA, Philipp DM et al (2013) Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int J Quantum Chem 113(18):2110–2142. https://doi.org/10.1002/qua.24481

    Article  CAS  Google Scholar 

  85. Sever B, Türkeş C, Altıntop MD, Demir Y, Beydemir Ş (2020) Thiazolyl-pyrazoline derivatives: in vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.09.043

    Article  PubMed  Google Scholar 

  86. Türkeş C, Beydemir Ş (2020) Inhibition of human serum paraoxonase-I with antimycotic drugs: in vitro and in silico studies. Appl Biochem Biotechnol 190(1):252–269. https://doi.org/10.1007/s12010-019-03073-3

    Article  CAS  PubMed  Google Scholar 

  87. Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ et al (2021) Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: biological evaluation and molecular docking studies. J Biomol Struct Dyn 39(15):5449–5460. https://doi.org/10.1080/07391102.2020.1790422

    Article  CAS  PubMed  Google Scholar 

  88. Kilic A, Beyazsakal L, Işık M, Türkeş C, Necip A, Takım K et al (2020) Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem. https://doi.org/10.1016/j.jorganchem.2020.121542

    Article  Google Scholar 

  89. Türkeş C, Arslan M, Demir Y, Cocaj L, Nixha AR, Beydemir Ş (2019) Synthesis, biological evaluation and in silico studies of novel N-substituted phthalazine sulfonamide compounds as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2019.103004

    Article  PubMed  Google Scholar 

  90. Demir Y, Ceylan H, Türkeş C, Beydemir Ş (2021) Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1967195

    Article  PubMed  Google Scholar 

  91. Türkeş C, Akocak S, Işık M, Lolak N, Taslimi P, Durgun M et al (2021) Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1916599

    Article  PubMed  Google Scholar 

  92. Zhang L, Zhang H, Zhao Y, Li Z, Chen S, Zhai J et al (2013) Inhibitor selectivity between aldo–keto reductase superfamily members AKR1B10 and AKR1B1: role of Trp112 (Trp111). FEBS Lett 587(22):3681–3686. https://doi.org/10.1016/j.febslet.2013.09.031

    Article  CAS  PubMed  Google Scholar 

  93. Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput-Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  94. Gündoğdu S, Türkeş C, Arslan M, Demir Y, Beydemir Ş (2019) New isoindole-1, 3-dione substituted sulfonamides as potent inhibitors of carbonic anhydrase and acetylcholinesterase: design, synthesis, and biological evaluation. ChemistrySelect 4(45):13347–13355. https://doi.org/10.1002/slct.201903458

    Article  CAS  Google Scholar 

  95. Yaşar Ü, Gönül İ, Türkeş C, Demir Y, Beydemir Ş (2021) Transition–metal complexes of bidentate Schiff-base ligands: in vitro and in silico evaluation as non-classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect 29(6):7278–7284. https://doi.org/10.1002/slct.202102082

    Article  CAS  Google Scholar 

  96. Türkeş C, Demir Y, Beydemir Ş (2021) Calcium channel blockers: molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. J Biomol Struct Dyn 39(5):1672–1680. https://doi.org/10.1080/07391102.2020.1736631

    Article  CAS  PubMed  Google Scholar 

  97. Sever B, Türkeş C, Altıntop MD, Demir Y, Çiftçi GA, Beydemir Ş (2021) Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch Pharm (Weinheim, Ger) 354(12):e2100294. https://doi.org/10.1002/ardp.202100294

    Article  CAS  Google Scholar 

  98. Işık M, Akocak S, Lolak N, Taslimi P, Türkeş C, Gülçin İ et al (2020) Synthesis, characterization, biological evaluation, and in silico studies of novel 1,3-diaryltriazene-substituted sulfathiazole derivatives. Arch Pharm (Weinheim, Ger) 353(9):e2000102. https://doi.org/10.1002/ardp.202000102

    Article  CAS  Google Scholar 

  99. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  100. Demir Y, Türkeş C, Beydemir Ş (2020) Molecular docking studies and inhibition properties of some antineoplastic agents against paraoxonase-I. Anti-Cancer Agents Med Chem 20(7):887–896. https://doi.org/10.2174/1871520620666200218110645

    Article  CAS  Google Scholar 

  101. Türkeş C, Demir Y, Beydemir Ş (2022) Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I. J Biomol Struct Dyn 40(1):77–85. https://doi.org/10.1080/07391102.2020.1806927

    Article  CAS  PubMed  Google Scholar 

  102. Türkeş C, Kesebir Öztürk A, Demir Y, Küfrevioğlu Öİ, Beydemir Ş (2021) Calcium channel blockers: the effect of glutathione S-transferase enzyme activity and molecular docking studies. ChemistrySelect 6(40):11137–11143. https://doi.org/10.1002/slct.202103100

    Article  CAS  Google Scholar 

  103. Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş (2021) Novel benzoic acid derivatives: synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim, Ger) 354(3):2000282. https://doi.org/10.1002/ardp.202000282

    Article  CAS  Google Scholar 

  104. Osmaniye D, Türkeş C, Demir Y, Özkay Y, Beydemir Ş, Kaplancıklı ZA (2022) Design, synthesis, and biological activity of novel dithiocarbamate-methylsulfonyl hybrids as carbonic anhydrase inhibitors. Arch Pharm (Weinheim Ger). https://doi.org/10.1002/ardp.202200132

    Article  Google Scholar 

  105. Çalışkan B, Demir Y, Türkeş C (2021) Ophthalmic Drugs: In vitro paraoxonase 1 inhibition and molecular docking studies. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2284

    Article  PubMed  Google Scholar 

  106. Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A et al (2022) Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers. https://doi.org/10.1007/s11030-022-10422-8

    Article  PubMed  PubMed Central  Google Scholar 

  107. Türkeş C, Demir Y, Beydemir Ş (2021) Infection medications: assessment in-vitro glutathione S-transferase inhibition and molecular docking study. ChemistrySelect 6(43):11915–11924. https://doi.org/10.1002/slct.202103197

    Article  CAS  Google Scholar 

  108. Barreiro G, Guimarães CR, Tubert-Brohman I, Lyons TM, Tirado-Rives J, Jorgensen WL (2007) Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. J Chem Inf Model 47(6):2416–2428. https://doi.org/10.1021/ci700271z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sasikumar G, Arulmozhi S, Ashma A, Sudha A (2019) Mixed ligand ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) and their structural characterization, electrochemical, theoretical and biological studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.03.031

    Article  Google Scholar 

  110. Deswal Y, Asija S, Dubey A, Deswal L, Kumar D, Jindal DK et al (2022) Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of thiadiazole based Schiff base ligands: synthesis, structural characterization, DFT, antidiabetic and molecular docking studies. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.132266

    Article  Google Scholar 

  111. Yapar G, Duran HE, Lolak N, Akocak S, Türkeş C, Durgun M et al (2021) Biological effects of bis-hydrazone compounds bearing isovanillin moiety on the aldose reductase. Bioorg Chem. https://doi.org/10.1016/j.bioorg.2021.105473

    Article  PubMed  Google Scholar 

  112. Maccari R, Ottanà R, Curinga C, Vigorita MG, Rakowitz D, Steindl T et al (2005) Structure–activity relationships and molecular modelling of 5-arylidene-2, 4-thiazolidinediones active as aldose reductase inhibitors. Bioorg Med Chem 13(8):2809–2823. https://doi.org/10.1016/j.bmc.2005.02.026

    Article  CAS  PubMed  Google Scholar 

  113. Alexiou P, Nicolaou I, Stefek M, Kristl A, Demopoulos VJ (2008) Design and synthesis of N-(3, 5-difluoro-4-hydroxyphenyl) benzenesulfonamides as aldose reductase inhibitors. Bioorg Med Chem 16(7):3926–3932. https://doi.org/10.1016/j.bmc.2008.01.042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Ardahan University (Grant Number 2019-008), the Research Fund of Erzincan Binali Yıldırım University (Grant Number FBA-2017-501), and the Research Fund of Anadolu University (Grant Number 2102S003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeliz Demir or Erbay Kalay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4607 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, Y., Tokalı, F.S., Kalay, E. et al. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors. Mol Divers 27, 1713–1733 (2023). https://doi.org/10.1007/s11030-022-10526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10526-1

Keywords

Navigation