Skip to main content

Advertisement

Log in

Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially − 7.5, − 7.9, − 8.2, − 8.4, and − 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Fénéant L, Levy S, Cocquerel L (2014) CD81 and hepatitis C virus (HCV) infection. Viruses 6:535–572. https://doi.org/10.3390/v6020535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alter MJ (2011) HCV routes of transmission: what goes around comes around. Semin Liver Dis 31:340–346. https://doi.org/10.1055/s-0031-1297923

    Article  PubMed  Google Scholar 

  3. Alter MJ (2002) Prevention of spread of hepatitis C. Hepatology 36:S93-98. https://doi.org/10.1053/jhep.2002.36389

    Article  PubMed  Google Scholar 

  4. Idrees M, Riazuddin S (2008) Frequency distribution of hepatitis C virus genotypes in different geographical regions of Pakistan and their possible routes of transmission. BMC Infect Dis 8:69. https://doi.org/10.1186/1471-2334-8-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thrift AP, El-Serag HB, Kanwal F (2017) Global epidemiology and burden of HCV infection and HCV-related disease. Nat Rev Gastroenterol Hepatol 14:122–132. https://doi.org/10.1038/nrgastro.2016.176

    Article  PubMed  Google Scholar 

  6. Tripathi P, Ghosh S, Talapatra SN (2019) Bioavailability prediction of phytochemicals present in Calotropis procera (Aiton) R. Br. by using Swiss-ADME tool. World Sci News 131:147–163

    CAS  Google Scholar 

  7. Ashfaq UA, Javed T, Rehman S, Nawaz Z, Riazuddin S (2011) An overview of HCV molecular biology, replication and immune responses. Virol J 8:161. https://doi.org/10.1186/1743-422x-8-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boulestin A, Sandres-Sauné K, Payen JL, Alric L, Dubois M, Pasquier C, Vinel JP, Pascal JP, Puel J, Izopet J (2002) Genetic heterogeneity of the envelope 2 gene and eradication of hepatitis C virus after a second course of interferon-alpha. J Med Virol 68:221–228. https://doi.org/10.1002/jmv.10192

    Article  CAS  PubMed  Google Scholar 

  9. Polyak SJ, McArdle S, Liu SL, Sullivan DG, Chung M, Hofgärtner WT, Carithers RL Jr, McMahon BJ, Mullins JI, Corey L et al (1998) Evolution of hepatitis C virus quasispecies in hypervariable region 1 and the putative interferon sensitivity-determining region during interferon therapy and natural infection. J Virol 72:4288–4296. https://doi.org/10.1128/jvi.72.5.4288-4296.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lavie M, Sarrazin S, Montserret R, Descamps V, Baumert TF, Duverlie G, Séron K, Penin F, Dubuisson J (2014) Identification of conserved residues in hepatitis C virus envelope glycoprotein E2 that modulate virus dependence on CD81 and SRB1 entry factors. J Virol 88:10584–10597. https://doi.org/10.1128/jvi.01402-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zona L, Tawar RG, Zeisel MB, Xiao F, Schuster C, Lupberger J, Baumert TF (2014) CD81-receptor associations–impact for hepatitis C virus entry and antiviral therapies. Viruses 6:875–892. https://doi.org/10.3390/v6020875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alberione MP, Moeller R, Kirui J, Ginkel C, Doepke M, Ströh LJ, Machtens JP, Pietschmann T, Gerold G (2020) Single-nucleotide variants in human CD81 influence hepatitis C virus infection of hepatoma cells. Med Microbiol Immunol 209:499–514. https://doi.org/10.1007/s00430-020-00675-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Catanese MT, Ansuini H, Graziani R, Huby T, Moreau M, Ball JK, Paonessa G, Rice CM, Cortese R, Vitelli A et al (2010) Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants. J Virol 84:34–43. https://doi.org/10.1128/jvi.02199-08

    Article  CAS  PubMed  Google Scholar 

  14. Zona L, Lupberger J, Sidahmed-Adrar N, Thumann C, Harris HJ, Barnes A, Florentin J, Tawar RG, Xiao F, Turek M et al (2013) HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex. Cell Host Microbe 13:302–313. https://doi.org/10.1016/j.chom.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  15. Sainz B Jr, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, Marsh KA, Yu X, Chayama K, Alrefai WA et al (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285. https://doi.org/10.1038/nm.2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson GK, Stamataki Z (2012) In vitro systems for the study of hepatitis C virus infection. Int J Hepatol 2012:292591. https://doi.org/10.1155/2012/292591

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mee CJ, Harris HJ, Farquhar MJ, Wilson G, Reynolds G, Davis C et al (2009) Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J Virol 83:6211–6221. https://doi.org/10.1128/jvi.00246-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hemshekhar M, Sunitha K, Santhosh MS, Devaraja S, Kemparaju K, Vishwanath B, Niranjana S, Girish K (2011) An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev 10:325–351. https://doi.org/10.1007/s11101-011-9207-3

    Article  CAS  Google Scholar 

  19. Pagliaro B, Santolamazza C, Simonelli F, Rubattu S (2015) Phytochemical compounds and protection from cardiovascular diseases: a state of the art. Biomed Res Int. https://doi.org/10.1155/2015/918069

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shuaib M, Kushwaha PP, Prajapati KS, Singh AK, Sharma R, Kumar S (2021) Effect of dietary phytochemicals in obesity and cancer. In Obesity and cancer; Springer, Berlin, pp 163–184

    Google Scholar 

  21. Dey D, Quispe C, Hossain R, Jain D, Ahmed Khan R, Janmeda P, Islam MT et al (2021) Ethnomedicinal use, phytochemistry, and pharmacology of Xylocarpus granatum J. Koenig. Evid Based Complement Alternat Med. https://doi.org/10.1155/2021/8922196

    Article  PubMed  PubMed Central  Google Scholar 

  22. Paul P, Biswas P, Dey D, Saikat ASM, Islam M, Sohel M, Hossain R, Mamun AA, Rahman M, Hasan M (2021) Exhaustive plant profile of “Dimocarpus longan Lour” with significant phytomedicinal properties: a literature based-review. Processes 9:1803

    Article  CAS  Google Scholar 

  23. Naithani R, Huma LC, Holland LE, Shukla D, McCormick DL, Mehta RG, Moriarty RM (2008) Antiviral activity of phytochemicals: a comprehensive review. Mini Rev Med Chem 8:1106–1133. https://doi.org/10.2174/138955708785909943

    Article  CAS  PubMed  Google Scholar 

  24. Ashfaq UA, Idrees S (2014) Medicinal plants against hepatitis C virus. World J Gastroenterol 20:2941–2947. https://doi.org/10.3748/wjg.v20.i11.2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dey D, Paul PK, Al Azad S, Al Mazid MF, Khan AM, Sharif MA, Rahman MH (2021) Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. J Adv Vet Anim Res 8:24–35. https://doi.org/10.5455/javar.2021.h481

    Article  PubMed  PubMed Central  Google Scholar 

  26. Biswas P, Dey D, Rahman A, Islam MA, Susmi TF, Kaium MA, Hasan MN, Rahman MDH, Mahmud S, Saleh MA et al (2021) Analysis of SYK gene as a prognostic biomarker and suggested potential bioactive phytochemicals as an alternative therapeutic option for colorectal cancer: an in-silico pharmaco-informatics investigation. J Pers Med. https://doi.org/10.3390/jpm11090888

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE (2012) UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179:269–278. https://doi.org/10.1016/j.jsb.2011.09.006

    Article  CAS  PubMed  Google Scholar 

  28. Hossain R, Al-Khafaji K, Khan RA, Sarkar C, Islam M, Dey D, Jain D, Faria F, Akbor R, Atolani O (2021) Quercetin and/or ascorbic acid modulatory effect on phenobarbital-induced sleeping mice possibly through gabaa and gabab receptor interaction pathway. Pharmaceuticals 14:721. https://doi.org/10.3390/ph14080721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain D, Hossain R, Khan RA, Dey D, Toma TR, Islam MT, Janmeda P, Hakeem KR (2021) Computer-aided evaluation of Anti-SARS-CoV-2 (3-chymotrypsin-like protease and transmembrane protease serine 2 inhibitors) activity of cepharanthine: an in silico approach. Biointerface Res Appl Chem. https://doi.org/10.33263/BRIAC121.768780

    Article  Google Scholar 

  30. Sharif MA, Hossen MS, Shaikat MM, Mashuk F, Haidary TIE, Dey D, Paul PK, Al Azad S, Almazid MF, Badal MNU (2021) Molecular optimization, docking and dynamic simulation study of selective natural aromatic components to block E2-CD81 complex formation in predating protease inhibitor resistant HCV influx. Int J Pharm Res 13:10. https://doi.org/10.31838/ijpr/2021.13.02.408

    Article  Google Scholar 

  31. Land H, Humble MS (2018) YASARA: a tool to obtain structural guidance in biocatalytic investigations. Methods Mol Biol 1685:43–67. https://doi.org/10.1007/978-1-4939-7366-8_4

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  33. Harrach MF, Drossel B (2014) Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. J Chem Phys. https://doi.org/10.1063/1.4872239

    Article  PubMed  Google Scholar 

  34. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007. https://doi.org/10.1002/jcc.23899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Essmann E et al (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  36. Krieger E, Nielsen JE, Spronk CA, Vriend G (2006) Fast empirical pKa prediction by Ewald summation. J Mol Graph Model 25:481–486. https://doi.org/10.1016/j.jmgm.2006.02.009

    Article  CAS  PubMed  Google Scholar 

  37. Zilani MNH, Islam MA, Biswas P, Anisuzzman M, Hossain H, Shilpi JA, Hasan MN, Hossain MG (2021) Metabolite profiling, anti-inflammatory, analgesic potentials of edible herb Colocasia gigantea and molecular docking study against COX-II enzyme. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2021.114577

    Article  PubMed  Google Scholar 

  38. Islam MA, Zilani MNH, Biswas P, Khan DA, Rahman MH, Nahid R, Nahar N, Samad A, Ahammad F, Hasan MN (2022) Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. J Ethnopharmacol 285:114900. https://doi.org/10.1016/j.jep.2021.114900

    Article  CAS  PubMed  Google Scholar 

  39. Adji A, Niode NJ, Memah VV, Posangi J, Wahongan GJP, Ophinni Y, Idroes R, Mahmud S, Emran TB, Nainu F et al (2021) Designing an epitope vaccine against Dermatophagoides pteronyssinus: an in silico study. Acta Trop. https://doi.org/10.1016/j.actatropica.2021.106028

    Article  PubMed  Google Scholar 

  40. Dutta M, Tareq AM, Rakib A, Mahmud S, Sami SA, Mallick J, Islam MN, Majumder M, Uddin MZ, Alsubaie A et al (2021) Phytochemicals from Leucas zeylanica targeting main protease of SARS-CoV-2: chemical profiles, molecular docking, and molecular dynamics simulations. Biology (Basel). https://doi.org/10.3390/biology10080789

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mahmud S, Biswas S, Paul GK, Mita MA, Afrose S, Hasan MR, Shimu MSS, Uddin MAR, Uddin MS, Zaman S (2021) Antiviral peptides against the main protease of SARS-CoV-2: a molecular docking and dynamics study. Arab J Chem. https://doi.org/10.1016/j.arabjc.2021.103315

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mahmud S, Biswas S, Paul GK, Mita MA, Promi MM, Afrose S, Hasan MR, Zaman S, Uddin MS, Dhama K et al (2021) Plant-based phytochemical screening by targeting main protease of SARS-CoV-2 to design effective potent inhibitors. Biology (Basel). https://doi.org/10.3390/biology10070589

    Article  PubMed  Google Scholar 

  43. Mahmud S, Mita MA, Biswas S, Paul GK, Promi MM, Afrose S, Hasan R, Shimu SS, Zaman S, Uddin S et al (2021) Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets. Expert Rev Clin Pharmacol 14:1305–1315. https://doi.org/10.1080/17512433.2021.1959318

    Article  CAS  PubMed  Google Scholar 

  44. Dash R, Ali MC, Dash N, Azad MAK, Hosen SMZ, Hannan MA, Moon IS (2019) Structural and dynamic characterizations highlight the deleterious role of SULT1A1 R213H polymorphism in substrate binding. Int J Mol Sci. https://doi.org/10.3390/ijms20246256

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sohel M, Biswas P, Al Amin M, Hossain M, Sultana H, Dey D, Aktar S, Setu A, Khan M, Paul P (2022) Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. Processes 10:415. https://doi.org/10.3390/pr10020415

    Article  CAS  Google Scholar 

  46. Al Azad S, Ahmed S, Biswas P, Mia MAR, Farjana M, Arshe FA, Mily SJ, Ankhi AB, Shaikat MM, Sultana S (2022) Quantitative analysis of the factors influencing IDA and TSH downregulation in correlation to the fluctuation of activated vitamin D3 in women. J Adv Biotechnol Exp Ther. https://doi.org/10.5455/jabet.2022.d118

    Article  Google Scholar 

  47. Manvar D, Mishra M, Kumar S, Pandey VN (2012) Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. J Ethnopharmacol 144:545–554. https://doi.org/10.1016/j.jep.2012.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan RA, Hossain R, Siyadatpanah A, Al-Khafaji K, Khalipha ABR, Dey D, Asha UH, Biswas P, Saikat ASM, Chenari HA (2021) Diterpenes/diterpenoids and their derivatives as potential bioactive leads against dengue virus: a computational and network pharmacology study. Molecules 26:6821. https://doi.org/10.3390/molecules26226821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yousaf T, Rafique S, Wahid F, Rehman S, Nazir A, Rafique J, Aslam K, Shabir G, Shah SM (2018) Phytochemical profiling and antiviral activity of Ajuga bracteosa, Ajuga parviflora, Berberis lycium and Citrus lemon against Hepatitis C Virus. Microb Pathog 118:154–158. https://doi.org/10.1016/j.micpath.2018.03.030

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arefin A, Ema TI, Islam T, Hossen MS, Islam T, Al Azad S, Badal MNU, Islam MA, Biswas P, Alam NU (2021) Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach. J Biomed Res 35:459. https://doi.org/10.7555/JBR.35.20210111

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y (2019) ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm 10:148–157. https://doi.org/10.1039/c8md00472b

    Article  CAS  PubMed  Google Scholar 

  52. Rahman M, Rahman M, Hossain M, Biswas P, Islam R, Uddin MJ, Rhim H (2020) Molecular insights into the multifunctional role of natural compounds: autophagy modulation and cancer prevention. Biomedicines. https://doi.org/10.3390/biomedicines8110517

    Article  PubMed  PubMed Central  Google Scholar 

  53. Krüger A, Gonçalves Maltarollo V, Wrenger C, Kronenberger T (2019) ADME profiling in drug discovery and a new path paved on silica. Drug Discov Dev-New Adv. https://doi.org/10.5772/intechopen.86174

    Article  Google Scholar 

  54. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ntie-Kang F (2013) An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus 2:353. https://doi.org/10.1186/2193-1801-2-353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rahman M, Zilani M, Hasan N, Islam M, Hasan M, Yasmin F, Biswas P, Hirashima A, Kim B (2021) In vivo Neuropharmacological potential of Gomphandra tetrandra (Wall.) sleumer and in-silico study against β-amyloid precursor protein. Processes 9:1449. https://doi.org/10.3390/pr9081449

    Article  CAS  Google Scholar 

  57. Paul PK, Al Azad S, Rahman MH, Farjana M, Uddin MR, Dey D, Mahmud S, Ema TI, Biswas P, Anjum M et al (2022) Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: an in silico bioprospecting. J Adv Vet Anim Res 9:19–32. https://doi.org/10.5455/javar.2022.i565

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rahman M, Rahman M, Biswas P, Hossain M, Islam R, Hannan M, Uddin MJ, Rhim H (2021) Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants 10:23. https://doi.org/10.3390/antiox10010023

    Article  CAS  Google Scholar 

  59. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK (2010) Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS ONE. https://doi.org/10.1371/journal.pone.0012029

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hadisaputra S, Purwoko AA, Savalas LRT, Prasetyo N, Yuanita E, Hamdiani S (2020) Quantum chemical and Monte Carlo simulation studies on inhibition performance of caffeine and its derivatives against corrosion of copper. Coatings 10:1086. https://doi.org/10.3390/coatings10111086

    Article  CAS  Google Scholar 

  61. Zhang W, Li H, Younes SHH, Gómez de Santos P, Tieves F, Grogan G, Pabst M, Alcalde M, Whitwood AC, Hollmann F (2021) Biocatalytic aromaticity-breaking epoxidation of naphthalene and nucleophilic ring-opening reactions. ACS Catal 11:2644–2649. https://doi.org/10.1021/acscatal.0c05588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shakil S, Rizvi SMD, Greig NH (2021) High throughput virtual screening and molecular dynamics simulation for identifying a putative inhibitor of bacterial CTX-M-15. Antibiotics (Basel). https://doi.org/10.3390/antibiotics10050474

    Article  PubMed  Google Scholar 

  63. Páll S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B, Lindahl E (2020) Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J Chem Phys 153:134110. https://doi.org/10.1063/5.0018516

    Article  CAS  PubMed  Google Scholar 

  64. Wright JD, Sargsyan K, Wu X, Brooks BR, Lim C (2013) Protein-protein docking using EMAP in CHARMM and support vector machine: application to Ab/Ag complexes. J Chem Theory Comput 9:4186–4194. https://doi.org/10.1021/ct400508s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Faraj SE, González-Lebrero RM, Roman EA, Santos J (2016) Human frataxin folds via an intermediate state. Role of the C-terminal region. Sci Rep 6:20782. https://doi.org/10.1038/srep20782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0119264

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao Y, Zeng C, Massiah MA (2015) Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain. PLoS ONE. https://doi.org/10.1371/journal.pone.0124377

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shtaiwi A, Adnan R, Khairuddean M, Soib SF (2016) Investigation of newly designed human estrogen receptor inhibitors from benzophenones derivatives (BPs) by molecular docking and molecular dynamic simulation. Aust J Basic Appl Sci 10:49–59

    CAS  Google Scholar 

  69. Pathak RK, Gupta A, Shukla R, Baunthiyal M (2018) Identification of new drug-like compounds from millets as Xanthine oxidoreductase inhibitors for treatment of Hyperuricemia: a molecular docking and simulation study. Comput Biol Chem 76:32–41. https://doi.org/10.1016/j.compbiolchem.2018.05.015

    Article  CAS  PubMed  Google Scholar 

  70. Geierhaas CD, Nickson AA, Lindorff-Larsen K, Clarke J, Vendruscolo M (2007) BPPred: a web-based computational tool for predicting biophysical parameters of proteins. Protein Sci 16:125–134. https://doi.org/10.1110/ps.062383807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Patel CN, Goswami D, Jaiswal DG, Parmar RM, Solanki HA, Pandya HA (2021) Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2021.107874

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shivanika C et al (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1815584

    Article  Google Scholar 

  73. Islam R, Parves MR, Paul AS, Uddin N, Rahman MS, Mamun AA, Hossain MN, Ali MA, Halim MA (2021) A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn 39:3213–3224. https://doi.org/10.1080/07391102.2020.1761883

    Article  CAS  PubMed  Google Scholar 

  74. Dey D, Hossain R, Biswas P, Paul P, Islam M, Ema TI, Gain BK, Hasan MM, Bibi S, Islam MT, Rahman M (2022) Amentoflavone derivatives significantly act towards the main protease (3CLPRO/MPRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol Diver. https://doi.org/10.1007/s11030-022-10459-9

    Article  Google Scholar 

  75. Dichiara M, Amata B, Turnaturi R, Marrazzo A, Amata E (2020) Tuning properties for blood-brain barrier permeation: a statistics-based analysis. ACS Chem Neurosci 11:34–44. https://doi.org/10.1021/acschemneuro.9b00541

    Article  CAS  PubMed  Google Scholar 

  76. Hasan MM, Zilani MNH, Akter S, Nasrin P, Al Shajib GM, Islam MA, Biswas P, Mahmud S, Saleh MA, Hasan MN, Uddin SJ (2022) UHPLC-Q/Orbitrap/MS based chemical fingerprinting and hepatoprotective potential of medicinal plant Morinda angustifolia Roxb. S Afr J Bot 148:561–572. https://doi.org/10.1016/j.sajb.2022.05.037

    Article  CAS  Google Scholar 

  77. Alba J, Rienzo LD, Milanetti E, Acuto O, D’Abramo M (2020) Molecular dynamics simulations reveal canonical conformations in different pMHC/TCR interactions. Cells. https://doi.org/10.3390/cells9040942

    Article  PubMed  PubMed Central  Google Scholar 

  78. Muratori BG, Zamberlam CR, Mendes TB, Nozima BHN, Cerutti JM, Cerutti SM (2021) BDNF as a putative target for standardized extract of ginkgo biloba-induced persistence of object recognition memory. Molecules. https://doi.org/10.3390/molecules26113326

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sadeghi M, Zarei MA (2020) Molecular docking studies of some flavone analogues as α-Glucosidase inhibitors. J Med Plants 19:55–64

    Article  Google Scholar 

Download references

Funding

This research was supported by Korea Institute of Oriental Medicine (Grant Number KSN2021240), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A2066868), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A5A2019413), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HF20C0116), and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant Number: HF20C0038).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DD, and PB; Investigation, Data Curation, and Manuscript Writing: All authors; Visualization: DD, PB, PP, SM, MMH, BF, SB, MAR, BK; Writing-Review-Editing: DD, PB, BF, SB, MMH, MAR, BK; Supervision: MAR, and BK; Funding: BK All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Partha Biswas or Bonglee Kim.

Ethics declarations

Conflict of interest

All authors declared that there is no conflict in others.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, D., Biswas, P., Paul, P. et al. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers 27, 1309–1322 (2023). https://doi.org/10.1007/s11030-022-10491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10491-9

Keywords

Navigation