Skip to main content
Log in

Domino synthesis of 5-aminoimidazoles from Strecker multicomponent adducts via ytterbium-promoted isocyanide insertion/5-exo-dig cyclization

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new Lewis acid promoted domino isocyanide insertion/5-exo-dig cyclization of readily available Strecker 3-component adducts to 4-substituted 5-aminoimidazole derivatives is herein reported. Despite their potential as relevant heterocyclic scaffolds in medicinal chemistry programs, this class of compounds is still underrepresented, with current synthetic strategies poorly efficient in terms of timing and yields. To this end, we show how the exploitation of unconventional reactivities of isocyanides, promoted by ytterbium-triflate, could represent a key resource to enable a fast and easy access to such an unexplored area of the chemical space.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3
Fig. 1
Fig. 2
Fig. 3

References

  1. Ugi I (1971) Isonitrile chemistry. Academic Press, New York and London

    Google Scholar 

  2. Nenajdenko VG (2012) Isocyanide chemistry. Wiley, New Jersey

    Book  Google Scholar 

  3. Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J (2017) To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chem Soc Rev 46:1295–1357. https://doi.org/10.1039/C6CS00444J

    Article  CAS  Google Scholar 

  4. Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley, New Jersey

    Book  Google Scholar 

  5. Zhu J, Wang Q, Wang M-X (2015) Multicomponent reactions in organic synthesis. Wiley, New Jersey

    Google Scholar 

  6. Herrera RP, Marqués-López E (2015) Multicomponent reactions. Wiley, Hoboken, New Jersey

    Google Scholar 

  7. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. https://doi.org/10.1002/1521-3773(20000915)39:18%3c3168::AID-ANIE3168%3e3.0.CO;2-U

    Article  Google Scholar 

  8. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112:3083–3135. https://doi.org/10.1021/cr100233r

    Article  CAS  Google Scholar 

  9. Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA (2020) Recent advances in palladium-catalyzed isocyanide insertions. Molecules 25:4906–4958. https://doi.org/10.3390/molecules25214906

    Article  CAS  Google Scholar 

  10. Collet JW, Roose TR, Ruijter E, Maes BUW, Orru RVA (2020) Base metal-catalyzed isocyanide insertions. Angew Chem Int Ed 59:540–558. https://doi.org/10.1002/anie.201905838

    Article  CAS  Google Scholar 

  11. Tong S, Wang Q, Wang M-X, Zhu J (2015) Tuning the reactivity of isocyano group: synthesis of imidazoles and imidazoliums from propargylamines and isonitriles in the presence of multiple catalysts. Angew Chem Int Ed 54:1293–1297. https://doi.org/10.1002/anie.201410113

    Article  CAS  Google Scholar 

  12. Tong S, Wang Q, Wang M-X, Zhu J (2016) Switchable [3+2] and [4+2] heteroannulation of primary propargylamines with isonitriles to imidazoles and 1,6- dihydropyrimidines: catalyst loading enabled reaction divergence. Chem Eur J 22:8332–8338. https://doi.org/10.1002/chem.201601560

    Article  CAS  Google Scholar 

  13. Svec RL, Furiassi L, Skibinski CG, Fan TM, Riggins GJ, Hergenrother PJ (2018) Tunable stability of imidazotetrazines leads to a potent compound for glioblastoma. ACS Chem Biol 13:3206–3216. https://doi.org/10.1021/acschembio.8b00864

    Article  CAS  Google Scholar 

  14. Hergenrother PJ, Fan TM, Svec RL (2021) Preparation of imidazotetrazine compounds for treating glioblastoma. US 20210002286.

  15. Hergenrother PJ, Fan TM, Svec RL (2020) Imidazotetrazine compounds as anticancer agents and their preparation. WO 2020033880.

  16. Alper P, Azimioara M, Cow C, Epple R, Lelais G, Mutnick D, Nikulin V (2011) Compounds and compositions as modulators of GPR119 activity. WO2011014520.

  17. Wang X, Fu J-P, Mo J-H, Tian Y-H, Liu C-Y, Tang HT, Sun Z-J, Pan Y-M (2021) Assembly of 5-aminoimidazoles via palladium-catalysed double isocyanide insertion reaction. Adv Synth Catal 363:2762–2766. https://doi.org/10.1002/adsc.202100142

    Article  CAS  Google Scholar 

  18. Soh CH, Chui WK, Lam Y (2006) Synthesis of 2,4-disubstituted 5-aminoimidazoles using microwave irradiation. J Comb Chem 8:464–468. https://doi.org/10.1021/cc060030j

    Article  CAS  Google Scholar 

  19. Bell CE, Shaw AY, De Moliner F, Hulme C (2014) For a microwave-assisted protocol toward 2,4-disubstituted 5-aminoimidazoles see: MCRs reshaped into a switchable microwave-assisted protocol toward 5-aminoimidazoles and dihydrotriazines. Tetrahedron 70:54–59. https://doi.org/10.1016/j.tet.2013.11.035

    Article  CAS  Google Scholar 

  20. Millick F (1972) The polymerization of isocyanides. Chem Rev 72:101–113

    Article  Google Scholar 

  21. Wu Z-Q, Ono RJ, Chen Z, Bielawski CW (2010) Synthesis of poly(3-alkylthiophene)-block-poly(arylisocyanide): two sequential, mechanistically distinct polymerizations using a single catalyst. J Am Chem Soc 132:14000–14001. https://doi.org/10.1021/ja106999q

    Article  CAS  Google Scholar 

  22. Xue Y-X, Zhu Y-Y, Gao L-M, He X-Y, Liu N, Zhang W-Y, Yin J, Ding Y, Zhou H, Wu Z-Q (2014) Air-stable (phenylbuta-1,3-diynyl)palladium(II) complexes: highly active initiators for living polymerization of isocyanides. J Am Chem Soc 136:4706–4713.

    Article  CAS  Google Scholar 

  23. Depending on the substitution pattern, some derivatives could be better stored for prolonged times at -20°C as hydrochloride salts. They indeed showed to be unstable after several weeks at both room temperature and -20°C.

Download references

Acknowledgements

Financial support from Università degli Studi di Napoli “Federico II” and Università del Piemonte Orientale, Novara, Italy is acknowledged. R. C. acknowledges MIUR-Ministero dell’Istruzione, dell’Università e della Ricerca (Italian Ministry of Education, University and Research), PON R&I 2014-2020-AIM (Attraction and International Mobility), project AIM1873131—Num. Attività 2—Linea 2.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rolando Cannalire or Mariateresa Giustiniano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11030_2022_10418_MOESM1_ESM.docx

Supplementary file1 (DOCX 13649 kb) Experimental synthetic procedures and copies of 1H- and 13C-NMR spectra for all the compounds reported in Supporting Information (PDF).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannalire, R., Russo, C., Luciano, P. et al. Domino synthesis of 5-aminoimidazoles from Strecker multicomponent adducts via ytterbium-promoted isocyanide insertion/5-exo-dig cyclization. Mol Divers 27, 511–515 (2023). https://doi.org/10.1007/s11030-022-10418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10418-4

Keywords

Navigation