Skip to main content

Advertisement

Log in

Detection of polypharmacy side effects by integrating multiple data sources and convolutional neural networks

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The consumption of drug combinations, named polypharmacy, is commonly used for treating patients with several diseases or those with complex conditions. However, the main drawback of polypharmacy is the increased probability of harmful side effects. The polypharmacy side effects are caused by an interaction between two medications. It means that the drug–drug interaction causes changes in their activities due to interfering in each other’s performance. Therefore, discovering these side effects is one of the most challenging and important aspects of drug production and consumption as it is associated with human health. In this paper, a method has been introduced for predicting the polypharmacy side effects, called PSECNN. It is a multi-label multi-class deep learning method that combines various basic features of drugs to predict the polypharmacy side effects. Firstly, PSECNN collects five basic features of drugs, such as individual drug’s side effects, drug–protein interactions, chemical substructures, targets, and enzymes in order to create a novel combination of drug features. A feature extraction module creates five feature vectors with the same dimension for each drug based on the Jaccard similarity index. Based on the feature vectors, a unique representative is then created for each drug. These representative vectors are given in pairs as input to the deep neural network to predict the occurrence probability of side effects. According to the experimental evaluations, PSECNN could outperform the state-of-the-art polypharmacy side effects prediction methods up to 74%. It has been found that PSECNN has better performance with polypharmacy side effects with a cause of molecular basis due to the novel combination of basic drug features.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wise J (2013) Polypharmacy: a necessary evil. BMJ. https://doi.org/10.1136/bmj.f7033

    Article  PubMed  Google Scholar 

  2. Qato DM, Wilder J, Schumm LP et al (2016) Changes in prescription and over-the-counter medication and dietary supplement use among older adults in the United States, 2005 vs 2011. JAMA Intern Med 176:473–482. https://doi.org/10.1001/jamainternmed.2015.8581

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kantor ED, Rehm CD, Haas JS et al (2015) Trends in prescription drug use among adults in the United States from 1999–2012. Jama 314:1818–1830. https://doi.org/10.1001/jama.2015.13766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han K, Jeng EE, Hess GT et al (2017) Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol 35:463. https://doi.org/10.1038/nbt.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jia J, Zhu F, Ma X et al (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8:111–128. https://doi.org/10.1038/nrd2683

    Article  CAS  PubMed  Google Scholar 

  6. Sun Y, Sheng Z, Ma C et al (2015) Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms9481

    Article  CAS  Google Scholar 

  7. Pan R, Ruvolo V, Mu H et al (2017) Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell 32:748–760. https://doi.org/10.1016/j.ccell.2017.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MediCareful (2018) United Nations, Health-Living, https://living.medicareful.com/3-common-medicines-you-should-never-mix

  9. Ernst FR, Grizzle AJ (2001) Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc 41:192–199. https://doi.org/10.1016/s1086-5802(16)31229-3

    Article  CAS  Google Scholar 

  10. Bansal M, Yang J, Karan C et al (2014) A community computational challenge to predict the activity of pairs of compounds. Nat Biotechnol 32:1213–1222. https://doi.org/10.1038/nbt.3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tatonetti NP, Patrick PY, Daneshjou R, Altman RB (2012) Data-driven prediction of drug effects and interactions. Sci Transl Med 4:125ra31-125ra31. https://doi.org/10.1126/scitranslmed.3003377

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vilar S, Friedman C, Hripcsak G (2018) Detection of drug–drug interactions through data mining studies using clinical sources, scientific literature and social media. Brief Bioinform 19:863–877. https://doi.org/10.1093/bib/bbx010

    Article  CAS  PubMed  Google Scholar 

  13. Percha B, Garten Y, Altman RB (2012) Discovery and explanation of drug-drug interactions via text mining. In: Biocomputing 2012. World Scientific, pp 410–421. https://doi.org/10.1142/9789814366496_0040

  14. Chen D, Zhang H, Lu P et al (2016) Synergy evaluation by a pathway–pathway interaction network: a new way to predict drug combination. Mol Biosyst 12:614–623. https://doi.org/10.1039/c5mb00599j

    Article  CAS  PubMed  Google Scholar 

  15. Shi J-Y, Li J-X, Gao K et al (2017) Predicting combinative drug pairs towards realistic screening via integrating heterogeneous features. BMC Bioinform 18:1–9. https://doi.org/10.1186/s12859-017-1818-2

    Article  CAS  Google Scholar 

  16. Takeda T, Hao M, Cheng T et al (2017) Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J Cheminform 9:1–9. https://doi.org/10.1186/s13321-017-0200-8

    Article  CAS  Google Scholar 

  17. Li J, Zheng S, Chen B et al (2016) A survey of current trends in computational drug repositioning. Brief Bioinform 17:2–12. https://doi.org/10.1093/bib/bbv020

    Article  PubMed  Google Scholar 

  18. Hodos RA, Kidd BA, Shameer K et al (2016) In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 8:186–210. https://doi.org/10.1002/wsbm.1337

    Article  PubMed  PubMed Central  Google Scholar 

  19. Campillos M, Kuhn M, Gavin AC et al (2008) Drug target identification using side-effect similarity. Science 80(321):263–266. https://doi.org/10.1126/science.1158140

    Article  CAS  Google Scholar 

  20. Chen X, Ren B, Chen M et al (2016) NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput Biol 12:e1004975. https://doi.org/10.1371/journal.pcbi.1004975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ryall KA, Tan AC (2015) Systems biology approaches for advancing the discovery of effective drug combinations. J Cheminform 7:1–15. https://doi.org/10.1186/s13321-015-0055-9

    Article  CAS  Google Scholar 

  22. Lewis R, Guha R, Korcsmaros T, Bender A (2015) Synergy Maps: exploring compound combinations using network-based visualization. J Cheminform 7:1–11. https://doi.org/10.1186/s13321-015-0090-6

    Article  CAS  Google Scholar 

  23. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    CAS  PubMed  Google Scholar 

  24. Žitnik M, Zupan B (2014) Data fusion by matrix factorization. IEEE Trans Pattern Anal Mach Intell 37:41–53. https://doi.org/10.1109/tpami.2014.2343973

    Article  Google Scholar 

  25. Huang H, Zhang P, Qu XA et al (2014) Systematic prediction of drug combinations based on clinical side-effects. Sci Rep 4:1–7. https://doi.org/10.1038/srep07160

    Article  CAS  Google Scholar 

  26. Huang L, Li F, Sheng J et al (2014) DrugComboRanker: drug combination discovery based on target network analysis. Bioinformatics 30:i228–i236. https://doi.org/10.1093/bioinfor-matics/btu278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zitnik M, Agrawal M, Leskovec J (2018) Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34:i457–i466. https://doi.org/10.1093/bioinfo-rmatics/bty294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malone B, García-Durán A, et al (2018) Knowledge graph completion to predict polypharmacy side effects. In: International conference on data integration in the life sciences (pp. 144–149). Springer, Cham. https://doi.org/10.1007/978-3-030-06016-9_14

  29. Nováček V, Mohamed SK (2020) Predicting polypharmacy side-effects using knowledge graph embeddings. AMIA Summits Transl Sci Proc 2020:449

    PubMed  PubMed Central  Google Scholar 

  30. Xu H, Sang S, Lu H (2020) Tri-graph information propagation for polypharmacy side effect prediction. arXiv Prepr http://arxiv.org/abs/2001.10516

  31. Papalexakis EE, Faloutsos C, Sidiropoulos ND (2016) Tensors for data mining and data fusion: models, applications, and scalable algorithms. ACM Trans Intell Syst Technol 8:1–44. https://doi.org/10.1145/2915921

    Article  Google Scholar 

  32. Nickel M, Tresp V, Kriegel H-P (2011) A three-way model for collective learning on multi-relational data. In: Icml

  33. Zong N, Kim H, Ngo V, Harismendy O (2017) Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33:2337–2344. https://doi.org/10.1093/bioinformatics/btx160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. pp 701–710. https://doi.org/10.1145/2623330.2623732

  35. Szklarczyk D, Santos A, Von Mering C et al (2016) STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44:D380–D384. https://doi.org/10.1093/nar/gkv1277

    Article  CAS  PubMed  Google Scholar 

  36. Knox C, Law V, Jewison T et al (2010) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041. https://doi.org/10.1093/nar/gkq1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim S, Thiessen A, Bolton E, Chen J et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  39. Kuhn M, Letunic I, Jensen LJ, Bork P (2016) The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1075–D1079. https://doi.org/10.1093/nar/gkv1075

    Article  CAS  PubMed  Google Scholar 

  40. Van Rossum G, Drake FL (2009) Python 3 reference manual. Scotts Valley, CA

  41. Abadi M, Barham P, Chen, J, Chen Z, et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) (pp. 265–283). https://doi.org/10.1007/978-1-4842-5967-2_11

  42. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Icml

  43. Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958

    Google Scholar 

  44. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv Prepr http://arxiv.org/abs/1412.6980

  45. Prechelt L (1998) Early stopping-but when? Neural networks: tricks of the trade. Springer, pp 55–69

    Chapter  Google Scholar 

  46. Gadekallu R, Khare N, Bhattacharya S, Singh S, Maddikunta R, Srivastava G (2020) Deep neural networks to predict diabetic retinopathy. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-01963-7

    Article  Google Scholar 

  47. Reddy T, Bhattacharya S, Maddikunta R, Hakak S, Khan Z, Bashir K, Jolfaei A, Tariq U (2020) Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09988-y

    Article  Google Scholar 

  48. Reddy T, Reddy K, Lakshmanna K, Kaluri R, Rajput S, Srivastava G, Baker T (2020) Analysis of dimensionality reduction techniques on big data. IEEE Access 8:54776–54788. https://doi.org/10.1109/access.2020.2980942

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their constructive and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Lakizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakizadeh, A., Babaei, M. Detection of polypharmacy side effects by integrating multiple data sources and convolutional neural networks. Mol Divers 26, 3193–3203 (2022). https://doi.org/10.1007/s11030-022-10382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10382-z

Keywords

Navigation