Skip to main content

Advertisement

Log in

Most recent strategies targeting estrogen receptor alpha for the treatment of breast cancer

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Breast cancer is the most prominent, frequently diagnosed and leading cause of death among women. Estrogen is an agonist of estrogen receptor alpha (ER-α), expressed in mammary glands and is responsible for initiating many signalling pathways that lead to differentiation and development of breast tissue. Any mutations in these signalling pathways result in irregular growth of mammary tissue, leading to the development of tumour or cancer. All these observations attract the attention of researchers to antagonize ER-α receptor either by developing selective estrogen receptor modulators or by selective estrogen receptor degraders. Therefore, this article provides a brief overview of various factors that are responsible for provoking breast cancer in women and design strategies recently used by the various research groups across the world for antagonizing or demodulating ER-α.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

AF-1:

Activation factor-1

AF-2:

Activation factor-2

AKT:

Protein kinase B

AR:

Androgen receptor

Arg:

Arginine

Asp:

Aspartate

B.C.:

Before Christ

C.E.:

Common Era

CDH-1:

Cadherin-1

DBD:

DNA binding domain

DDT:

Dichlorodiphenyltrichloroethane

DDE:

Dichlorodiphenyldichloroethylene

DNA:

Deoxyribonucleic acid

EAC:

Ascites carcinoma

EGFR:

Epidermal growth factor receptor

ELISA:

Enzyme-linked immunosorbent assay

ER:

Estrogen receptor

ER-β:

Estrogen receptor beta

ER-α:

Estrogen receptor alpha

ERE:

Estrogen response elements

ERR-α:

Estrogen-related receptor-α

FDA:

Food and Drug Administration

Glu:

Glutamine

GSH:

Glutathione

HCB:

Hexachlorobenzene

HDACi:

Histone deacetylase inhibitors

HER-2:

Human epidermal growth factor receptor 2

HER-3:

Human epidermal growth factor receptor 3

His:

Histidine

IC50 :

Half maximal inhibitory concentration

IC-NST:

Invasive carcinoma of no special type

ICC:

Invasive cribriform carcinoma

ILC:

Invasive lobular carcinoma

Ile:

Isoleucine

kDa:

Kilo dalton

kB:

Kilo bases

LBD:

Ligand-binding domain

LDH:

Lactate dehydrogenase

Leu:

Leucine

LNCap:

Lymph node carcinoma of the prostate

LOX:

Lipoxygenase

MAPK:

Mitogen-activated protein kinase

Met:

Methionine

mM:

Milli-molar

nM:

Nano-molar

NSAIDs:

Non-steroidal anti-inflammatory drugs

NTD:

Nuclear terminal domain

OBHSA:

7-Oxabicyclo[2.2.1]heptene sulphonamide

PDB:

Protein Data Bank

Phe:

Phenylalanine

PI3 Kinase:

Phosphoinositide 3-kinases

PILC:

Pleomorphic invasive lobular carcinoma

SAR:

Structure activity relationship

SERDs:

Selective estrogen receptor degraders

SERMs:

Selective estrogen receptor modulators

TGF-β1:

Transforming growth factor beta 1

THIQ:

Tetrahydroisoquinoline

Thr:

Threonine

Trp:

Tryptophan

Tyr:

Tyrosine

µM:

Micro-molar

Val:

Valine

VEGFR:

Vascular endothelial growth factor

WHO:

World Health Organization

References

  1. Sharma GN, Dave R, Sanadya J et al (2010) Various types and management of breast cancer: an overview. J Adv Pharm Technol Res 1:109–126

    PubMed  PubMed Central  Google Scholar 

  2. Organization WH (2018) WHO | Breast cancer. In: WHO. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 22 Apr 2020

  3. Global Comparison of Breast Cancer Statistics | India and the World | Globocan 2018. https://breastcancerindia.net/statistics/stat_global.html. Accessed 15 July 2020

  4. india fact sheets. https://gco.iarc.fr/today/data/factsheets/populations/356-india-fact-sheets.pdf. Accessed 22 Apr 2020

  5. Lukong KE (2017) Understanding breast cancer—the long and winding road. BBA Clin 7:64–77. https://doi.org/10.1016/j.bbacli.2017.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  6. Karpozilos A, Pavlidis N (2004) The treatment of cancer in Greek antiquity. Eur J Cancer 40:2033–2040. https://doi.org/10.1016/j.ejca.2004.04.036

    Article  CAS  PubMed  Google Scholar 

  7. Franco G (2012) Bernardino Ramazzini and women workers health in the second half of the XVIIth century. J Public Health (U K) 34:305–308. https://doi.org/10.1093/pubmed/fds029

    Article  Google Scholar 

  8. Robinson JO (1986) Treatment of breast cancer through the ages. Am J Surg 151:317–333. https://doi.org/10.1016/0002-9610(86)90461-7

    Article  CAS  PubMed  Google Scholar 

  9. Clapp RW, Jacobs MM, Howe GK (2008) Carcinogens, environmental. In: Quah S, Heggenhougen K (eds) International encyclopedia of public health. Elsevier, Amsterdam, pp 493–507

    Chapter  Google Scholar 

  10. Ataollahi MR, Sharifi J, Paknahad MR, Paknahad A (2015) Breast cancer and associated factors: a review. J Med Life 8:6–11

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hamajima N, Hirose K, Tajima K et al (2012) Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118,964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13:1141–1151. https://doi.org/10.1016/S1470-2045(12)70425-4

    Article  Google Scholar 

  12. Sieri S, Krogh V, Bolelli G et al (2009) Sex hormone levels, breast cancer risk, and cancer receptor status in postmenopausal women: the ORDET cohort. Cancer Epidemiol Biomark Prev 18:169–176. https://doi.org/10.1158/1055-9965.EPI-08-0808

    Article  CAS  Google Scholar 

  13. Shah R, Rosso K, David Nathanson S (2014) Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol 5:283–298

    Article  Google Scholar 

  14. Anstey EH, Shoemaker ML, Barrera CM et al (2017) Breastfeeding and breast cancer risk reduction: implications for Black Mothers. Am J Prev Med 53:S40–S46. https://doi.org/10.1016/j.amepre.2017.04.024

    Article  PubMed  PubMed Central  Google Scholar 

  15. Howell A, Anderson AS, Clarke RB et al (2014) Risk determination and prevention of breast cancer. Breast Cancer Res 16:1–19. https://doi.org/10.1186/s13058-014-0446-2

    Article  CAS  Google Scholar 

  16. Sanguinetti A, Polistena A, Lucchini R et al (2016) Male breast cancer, clinical presentation, diagnosis and treatment: 20 years of experience in our Breast Unit. Int J Surg Case Rep 20:8–11. https://doi.org/10.1016/j.ijscr.2016.02.004

    Article  PubMed Central  Google Scholar 

  17. Giordano SH, Buzdar AU, Hortobagyi GN (2002) Breast cancer in men 3343. Ann Intern Med 137:678–687. https://doi.org/10.1136/bmj.327.7409.239

    Article  PubMed  Google Scholar 

  18. Zucca-Matthes G, Urban C, Vallejo A (2016) Anatomy of the nipple and breast ducts. Gland Surg 5:32–36

    PubMed  PubMed Central  Google Scholar 

  19. Feng XH, Liang YY, Liang M et al (2002) Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-β-mediated induction of the CDK inhibitor p15Ink4B. Mol Cell 9:133–143. https://doi.org/10.1016/S1097-2765(01)00430-0

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Huang S, Wu B et al (2017) Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget 8:49110–49122. https://doi.org/10.18632/oncotarget.16308

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jakowlew SB (2006) Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev 25:435–457

    Article  CAS  Google Scholar 

  22. Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21:100–107

    Article  CAS  Google Scholar 

  23. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116:561–570

    Article  CAS  Google Scholar 

  24. Yue W, Santen RJ, Wang JP et al (2003) Genotoxic metabolites of estradiol in breast: potential mechanism of estradiol induced carcinogenesis. J Steroid Biochem Mol Biol 86:477–486

    Article  CAS  Google Scholar 

  25. Grimm SL, Hartig SM, Edwards DP (2016) Progesterone receptor signaling mechanisms. J Mol Biol 428:3831–3849

    Article  CAS  Google Scholar 

  26. Wang S, Nath N, Adlam M, Chellappan S (1999) Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function. Oncogene 18:3501–3510. https://doi.org/10.1038/sj.onc.1202684

    Article  CAS  PubMed  Google Scholar 

  27. Peng YT, Chen P, Ouyang RY, Song L (2015) Multifaceted role of prohibitin in cell survival and apoptosis. Apoptosis 20:1135–1149. https://doi.org/10.1007/s10495-015-1143-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yip CH, Rhodes A (2014) Estrogen and progesterone receptors in breast cancer. Future Oncol 10:2293–2301

    Article  CAS  Google Scholar 

  29. Gross JM, Yee D (2002) How does the estrogen receptor work? Breast Cancer Res 4:62–64. https://doi.org/10.1186/bcr424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuentes N, Silveyra P (2019) Estrogen receptor signaling mechanisms. In: Donev R (ed) Advances in protein chemistry and structural biology. Academic Press Inc., London, pp 135–170

    Google Scholar 

  31. Toyama H, Shirakawa H, Komai M et al (2018) Development of novel silanol-based human pregnane X receptor (PXR) agonists with improved receptor selectivity. Bioorg Med Chem 26:4493–4501. https://doi.org/10.1016/j.bmc.2018.07.038

    Article  CAS  PubMed  Google Scholar 

  32. Arboleda VA, Quigley CA, Vilain E (2015) Genetic basis of gonadal and genital development. In: Jameson JL, De Groot LJ (eds) Endocrinology: adult and pediatric. Elsevier, Amsterdam, pp 2051–2085.e7

    Google Scholar 

  33. Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F (2014) Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential. Steroids 90:13–29

    Article  CAS  Google Scholar 

  34. Heldring N, Pike A, Andersson S et al (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931

    Article  CAS  Google Scholar 

  35. Bonkhoff H (2018) Estrogen receptor signaling in prostate cancer: implications for carcinogenesis and tumor progression. Prostate 78:2–10

    Article  CAS  Google Scholar 

  36. Duffy M (2006) Estrogen receptors: role in breast cancer. Crit Rev Clin Lab Sci 43:325–347

    Article  CAS  Google Scholar 

  37. Al-Bader M, Ford C, Al-Ayadhy B, Francis I (2011) Analysis of estrogen receptor isoforms and variants in breast cancer cell lines. Exp Ther Med 2:537–544. https://doi.org/10.3892/etm.2011.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nilsson S, Mäkelä S, Treuter E et al (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565

    Article  CAS  Google Scholar 

  39. Patel HK, Bihani T (2018) Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther 186:1–24

    Article  CAS  Google Scholar 

  40. Jiang Z, Guo J, Shen J et al (2012) The role of estrogen receptor alpha in mediating chemoresistance in breast cancer cells. J Exp Clin Cancer Res 31:42. https://doi.org/10.1186/1756-9966-31-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Faslodex. In: EMA. https://www.ema.europa.eu/en/medicines/human/EPAR/fulvestrant-mylan. Accessed 22 Apr 2020

  42. Li Y, Zhang S, Zhang J et al (2019) Exploring the PROTAC degron candidates: OBHSA with different side chains as novel selective estrogen receptor degraders (SERDs). Eur J Med Chem 172:48–61. https://doi.org/10.1016/j.ejmech.2019.03.058

    Article  CAS  PubMed  Google Scholar 

  43. Hu Z, Li Y, Xie B et al (2019) Novel class of 7-Oxabicyclo[2.2.1]heptene sulfonamides with long alkyl chains displaying improved estrogen receptor α degradation activity. Eur J Med Chem 182:111605. https://doi.org/10.1016/j.ejmech.2019.111605

    Article  CAS  PubMed  Google Scholar 

  44. Ning W, Hu Z, Tang C et al (2018) Novel hybrid conjugates with dual suppression of estrogenic and inflammatory activities display significantly improved potency against breast cancer. J Med Chem 61:8155–8173. https://doi.org/10.1021/acs.jmedchem.8b00224

    Article  CAS  PubMed  Google Scholar 

  45. Nagasawa J, Govek S, Kahraman M et al (2018) Identification of an orally bioavailable chromene-based selective estrogen receptor degrader (SERD) that demonstrates robust activity in a model of tamoxifen-resistant breast cancer. J Med Chem 61:7917–7928. https://doi.org/10.1021/acs.jmedchem.8b00921

    Article  CAS  PubMed  Google Scholar 

  46. Fanning SW, Hodges-Gallagher L, Myles DC et al (2018) Specific stereochemistry of OP-1074 disrupts estrogen receptor alpha helix 12 and confers pure antiestrogenic activity. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-04413-3

    Article  CAS  Google Scholar 

  47. Dhawan S, Kerru N, Awolade P et al (2018) Synthesis, computational studies and antiproliferative activities of coumarin-tagged 1,3,4-oxadiazole conjugates against MDA-MB-231 and MCF-7 human breast cancer cells. Bioorg Med Chem 26:5612–5623. https://doi.org/10.1016/j.bmc.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  48. O’Boyle NM, Barrett I, Greene LM et al (2018) Lead optimization of benzoxepin-type selective estrogen receptor (ER) modulators and downregulators with subtype-specific ERα and ERβ activity. J Med Chem 61:514–534. https://doi.org/10.1021/acs.jmedchem.6b01917

    Article  CAS  PubMed  Google Scholar 

  49. Singla R, Gupta KB, Upadhyay S et al (2018) Design, synthesis and biological evaluation of novel indole-xanthendione hybrids as selective estrogen receptor modulators. Bioorg Med Chem 26:266–277. https://doi.org/10.1016/j.bmc.2017.11.040

    Article  CAS  PubMed  Google Scholar 

  50. Hendy MS, Ali AA, Ahmed L et al (2019) Structure-based drug design, synthesis, in vitro, and in vivo biological evaluation of indole-based biomimetic analogs targeting estrogen receptor-α inhibition. Eur J Med Chem 166:281–290. https://doi.org/10.1016/j.ejmech.2019.01.068

    Article  CAS  PubMed  Google Scholar 

  51. Scott JS, Bailey A, Buttar D et al (2019) Tricyclic indazoles—a novel class of selective estrogen receptor degrader antagonists. J Med Chem 62:1593–1608. https://doi.org/10.1021/acs.jmedchem.8b01837

    Article  CAS  PubMed  Google Scholar 

  52. Luo G, Tang Z, Lao K et al (2018) Structure–activity relationships of 2, 4-disubstituted pyrimidines as dual ERα/VEGFR-2 ligands with anti-breast cancer activity. Eur J Med Chem 150:783–795. https://doi.org/10.1016/j.ejmech.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  53. Tria GS, Abrams T, Baird J et al (2018) Discovery of LSZ102, a potent, orally bioavailable selective estrogen receptor degrader (SERD) for the treatment of estrogen receptor positive breast cancer. J Med Chem 61:2837–2864. https://doi.org/10.1021/acs.jmedchem.7b01682

    Article  CAS  PubMed  Google Scholar 

  54. Kuznetsov YV, Levina IS, Scherbakov AM et al (2018) New estrogen receptor antagonists. 3,20-Dihydroxy-19-norpregna-1,3,5(10)-trienes: synthesis, molecular modeling, and biological evaluation. Eur J Med Chem 143:670–682. https://doi.org/10.1016/j.ejmech.2017.11.042

    Article  CAS  PubMed  Google Scholar 

  55. Volkova YA, Kozlov AS, Kolokolova MK et al (2019) Steroidal N-sulfonylimidates: synthesis and biological evaluation in breast cancer cells. Eur J Med Chem 179:694–706. https://doi.org/10.1016/j.ejmech.2019.06.048

    Article  CAS  PubMed  Google Scholar 

  56. Park H, McEachon JD, Pollock JA (2019) Synthesis and characterization of hydrogen peroxide activated estrogen receptor beta ligands. Bioorg Med Chem 27:2075–2082. https://doi.org/10.1016/j.bmc.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  57. Palermo AF, Diennet M, El Ezzy M et al (2018) Incorporation of histone deacetylase inhibitory activity into the core of tamoxifen—a new hybrid design paradigm. Bioorg Med Chem 26:4428–4440. https://doi.org/10.1016/j.bmc.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  58. Banti CN, Papatriantafyllopoulou C, Tasiopoulos AJ, Hadjikakou SK (2018) New metalo-therapeutics of NSAIDs against human breast cancer cells. Eur J Med Chem 143:1687–1701. https://doi.org/10.1016/j.ejmech.2017.10.067

    Article  CAS  PubMed  Google Scholar 

  59. Du Y, Song L, Zhang L et al (2017) The discovery of novel, potent ERR-alpha inverse agonists for the treatment of triple negative breast cancer. Eur J Med Chem 136:457–467. https://doi.org/10.1016/j.ejmech.2017.04.050

    Article  CAS  PubMed  Google Scholar 

  60. Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2019

Download references

Acknowledgements

Authors are grateful to the University Grants Commission for providing funds under, National Fellowship for Other Backward Classes (NFOBC) to AS, Rajiv Gandhi National Fellowship (RGNF) to HS, Council of Scientific and Industrial Research (CSIR: 02(0319)17/EMR-II) to JVS and funds under Component 4 of Rashtriya Uchchatar Shiksha Abhiyan (RUSA) scheme 2.0 to NK. The authors are also thankful to Guru Nanak Dev University, Amritsar for providing various basic facilities to complete the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harbinder Singh, Jatinder Vir Singh or Preet Mohinder Singh Bedi.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Gulati, H.K., Sharma, A. et al. Most recent strategies targeting estrogen receptor alpha for the treatment of breast cancer. Mol Divers 25, 603–624 (2021). https://doi.org/10.1007/s11030-020-10133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10133-y

Keywords

Navigation