Skip to main content
Log in

Design, synthesis, and molecular docking studies of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives as potential A2B receptor antagonists

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Many shreds of evidence have recently correlated A2B receptor antagonism with anticancer activity. Hence, the search for an efficient A2B antagonist may help in the development of a new chemotherapeutic agent. In this article, 23 new derivatives of [1,2,4]triazolo[4,3-a]quinoxaline were designed and synthesized and its structures were confirmed by different spectral data and elemental analyses. The results of cytotoxic evaluation of these compounds showed six promising active derivatives with IC50 values ranging from 1.9 to 6.4 μM on MDA-MB 231 cell line. Additionally, molecular docking for all synthesized compounds was performed to predict their binding affinity toward the homology model of A2B receptor as a proposed mode of their cytotoxic activity. Results of molecular docking were strongly correlated with those of the cytotoxic study. Finally, structure activity relationship analyses of the new compounds were explored.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El Maatougui A, Azuaje J, González-Gómez M et al (2016) Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. J Med Chem 59:1967–1983. https://doi.org/10.1021/acs.jmedchem.5b01586

    Article  CAS  PubMed  Google Scholar 

  2. Moro S, Deflorian F, Bacilieri M, Spalluto G (2006) Ligand-based homology modeling as attractive tool to inspect GPCR Structural plasticity. Curr Pharm Des 12:2175–2185. https://doi.org/10.2174/138161206777585265

    Article  CAS  PubMed  Google Scholar 

  3. Basu S, Barawkar DA, Ramdas V et al (2017) A2B adenosine receptor antagonists: design, synthesis and biological evaluation of novel xanthine derivatives. Eur J Med Chem 127:986–996. https://doi.org/10.1016/j.ejmech.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  4. Betti M, Catarzi D, Varano F et al (2018) The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. Eur J Med Chem 150:127–139. https://doi.org/10.1016/j.ejmech.2018.02.081

    Article  CAS  PubMed  Google Scholar 

  5. Merighi S, Mirandola P, Varani K et al (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100:31–48

    Article  CAS  Google Scholar 

  6. Illes P, Klotz K-N, Lohse MJ (2000) Signaling by extracellular nucleotides and nucleosides. Naunyn Schmiedebergs Arch Pharmacol 362:295–298. https://doi.org/10.1007/s002100000308

    Article  CAS  PubMed  Google Scholar 

  7. Panjehpour M, Castro M, Klotz K-N (2005) Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol 145:211–218. https://doi.org/10.1038/sj.bjp.0706180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feoktistov I, Goldstein AE, Ryzhov S et al (2002) Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90:531–538

    Article  CAS  Google Scholar 

  9. Kasama H, Sakamoto Y, Kasamatsu A et al (2015) Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer 15:563. https://doi.org/10.1186/s12885-015-1577-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Popoli P, Pepponi R (2012) Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol Disord Drug Targets 11:664–674. https://doi.org/10.2174/187152712803581100

    Article  CAS  PubMed  Google Scholar 

  11. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta Biomembr 1808:1329–1339. https://doi.org/10.1016/j.bbamem.2010.05.016

    Article  CAS  Google Scholar 

  12. Müller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta Biomembr 1808:1290–1308. https://doi.org/10.1016/j.bbamem.2010.12.017

    Article  CAS  Google Scholar 

  13. Sherbiny FF, Schiedel AC, Maaß A, Müller CE (2009) Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor. J Comput Aid Mol Des 23:807–828. https://doi.org/10.1007/s10822-009-9299-7

    Article  CAS  Google Scholar 

  14. Gu W, Wang S, Jin X et al (2017) Synthesis and evaluation of new quinoxaline derivatives of dehydroabietic acid as potential antitumor agents. Molecules 22:1154. https://doi.org/10.3390/molecules22071154

    Article  CAS  PubMed Central  Google Scholar 

  15. El-Hawash SAM, Habib NS, Kassem MA (2006) Synthesis of some new quinoxalines and 1,2,4-triazolo[4,3-a]-quinoxalines for evaluation of in vitro antitumor and antimicrobial activities. Arch Pharm (Weinheim) 339:564–571. https://doi.org/10.1002/ardp.200600061

    Article  CAS  Google Scholar 

  16. Ihmaid S, Ahmed HEA, Al-Sheikh Ali A et al (2017) Rational design, synthesis, pharmacophore modeling, and docking studies for identification of novel potent DNA-PK inhibitors. Bioorg Chem 72:234–247. https://doi.org/10.1016/j.bioorg.2017.04.014

    Article  CAS  PubMed  Google Scholar 

  17. El-Morsy AM, El-Sayed MS, Abulkhair HS (2017) Synthesis, characterization and in vitro antitumor evaluation of new pyrazolo[3,4-d]pyrimidine derivatives. Open J Med Chem 07:1–17. https://doi.org/10.4236/ojmc.2017.71001

    Article  Google Scholar 

  18. Gaber AA, Bayoumi AH, El-morsy AM et al (2018) Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg Chem 80:375–395. https://doi.org/10.1016/j.bioorg.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  19. El-Helby A-GA, Sakr H, Eissa IH et al (2019) Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFR-2 inhibitors. Arch Pharm (Weinheim). https://doi.org/10.1002/ardp.201900113

    Article  Google Scholar 

  20. El-Helby A-GA, Ayyad RRA, Zayed MF et al (2019) Design, synthesis, in silico ADMET profile and GABA-A docking of novel phthalazines as potent anticonvulsants. Arch Pharm (Weinheim). https://doi.org/10.1002/ardp.201800387

    Article  Google Scholar 

  21. Colotta V, Catarzi D, Varano F et al (2004) 1,2,4-Triazolo[4,3- a]quinoxalin-1-one moiety as an attractive scaffold to develop new potent and selective human A3 adenosine receptor antagonists: synthesis, pharmacological, and ligand–receptor modeling studies. J Med Chem 47:3580–3590. https://doi.org/10.1021/jm031136l

    Article  CAS  PubMed  Google Scholar 

  22. Alswah M, Bayoumi A, Elgamal K et al (2017) Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules 23:48. https://doi.org/10.3390/molecules23010048

    Article  CAS  PubMed Central  Google Scholar 

  23. Abul-Khair H, Elmeligie S, Bayoumi A et al (2013) Synthesis and evaluation of some new (1,2,4) triazolo(4,3-a)quinoxalin-4(5H)-one derivatives as AMPA receptor antagonists. J Heterocycl Chem 50:1202–1208. https://doi.org/10.1002/jhet.714

    Article  CAS  Google Scholar 

  24. Wink D, Angelo NG, Henchey LK et al (2007) Synthesis and characterization of aldol condensation products from unknown aldehydes and ketones. J Chem Educ 84:1816. https://doi.org/10.1021/ed084p1816

    Article  Google Scholar 

  25. Morgan DML Tetrazolium (MTT) assay for cellular viability and activity. In: Polyamine protocols. Humana Press, New Jersey, pp 179–184

  26. van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: The MTT Assay, pp 237–245

  27. Scudiero DA, Shoemaker RH, Paull KD et al (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    CAS  PubMed  Google Scholar 

  28. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamada S. Abulkhair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzat, H.G., Bayoumi, A.H., Sherbiny, F.F. et al. Design, synthesis, and molecular docking studies of new [1,2,4]triazolo[4,3-a]quinoxaline derivatives as potential A2B receptor antagonists. Mol Divers 25, 291–306 (2021). https://doi.org/10.1007/s11030-020-10070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10070-w

Keywords

Navigation