Skip to main content
Log in

Efficient synthesis of novel pyrazole-linked 1,2,4-triazolidine-3-thiones using bismuth on zirconium oxide as a recyclable catalyst in aqueous medium

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The Bi2O3 loading on ZrO2 as heterogeneous catalyst was established as an extremely efficient catalyst for the synthesis of a series of novel 5-(1-(2,4-dinitrophenyl)-3-substituted-phenyl-1H-pyrazol-4-yl)-1,2,4-triazolidine-3-thione derivatives (3ao) with high yields (90–96%) by reaction of 1-(2,4-dinitrophenyl)-3-substituted-phenyl-1H-pyrazole-4-carbaldehydes and thiosemicarbazide using water as a greener solvent at 80 °C within 30–45 min. Materials with different percentages of Bi2O3 on ZrO2 were prepared by simple wet impregnation method. The synthesized material has been characterized by various techniques (XRD, TEM, SEM, BET). 2.5% Bi2O3/ZrO2 proved superior catalyst. The Bi2O3/ZrO2 catalyst is easily recoverable and reused up to sixth run with no loss of activity. Excellent yields, short reaction time, avoidance of hazardous solvents, and no need for chromatographic purifications are the proven advantages.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Vedrine JC (2017) Heterogeneous catalysis on metal oxides. Catalysts 7:341. https://doi.org/10.3390/catal7110341

    Article  CAS  Google Scholar 

  2. Guisnet M, Pinard L (2018) Characterization of acid-base catalysts through model reactions. Catal Rev 60:337–436. https://doi.org/10.1080/01614940.2018.1446683

    Article  CAS  Google Scholar 

  3. Min C, Seidel D (2017) Asymmetric Brønsted acid catalysis with chiral carboxylic acids. Chem Soc Rev 46:5889–5902. https://doi.org/10.1039/c6cs00239k

    Article  CAS  PubMed  Google Scholar 

  4. Vedrine JC (2015) Acid–base characterization of heterogeneous catalysts: an up-to-date overview. Res Chem Intermed 41:9387–9423. https://doi.org/10.1007/s11164-015-1982-9

    Article  CAS  Google Scholar 

  5. Zecchina A, Lamberti C, Bordiga S (1998) Surface acidity and basicity: general concepts. Catal Today 41:169–177

    Article  CAS  Google Scholar 

  6. Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CHF, Wang Y (2011) Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. J Am Chem Soc 133:11096–11099. https://doi.org/10.1021/ja204235v

    Article  CAS  PubMed  Google Scholar 

  7. Devaiah D, Reddy LH, Park SE, Reddy BM (2018) Ceria–zirconia mixed oxides: synthetic methods and applications. Catal Rev 60:177–277. https://doi.org/10.1080/01614940.2017.1415058

    Article  CAS  Google Scholar 

  8. Chakraborti AK, Gulhane R (2004) 8. Zirconium(IV) chloride as a new, highly efficient, and reusable catalyst for acetylation of phenols, thiols, amines, and alcohols under solvent-free conditions. Synleet 4:0627–0630. https://doi.org/10.1055/s-2004-815442

    Article  CAS  Google Scholar 

  9. Nikoofar K, Khademi Z (2016) A review on green Lewis acids: zirconium (IV) oxydichloride octahydrate (ZrOCl2·8H2O) and zirconium(IV) tetrachloride (ZrCl4) in organic chemistry. Res Chem Intermed 42:3929–3977. https://doi.org/10.1007/s11164-015-2260-6

    Article  CAS  Google Scholar 

  10. Bhaskaruni SVHS, Maddila S, van Zyl WE, Jonnalagadda SB (2017) RuO2/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized halopyridine derivatives. Catal Commun 100:24–28. https://doi.org/10.1016/j.catcom.2017.06.023

    Article  CAS  Google Scholar 

  11. Bhaskaruni SVHS, Maddila S, van Zyl WE, Jonnalagadda SB (2017) V2O5/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-dihydropyridine derivatives. Catal Today 309:276–281. https://doi.org/10.1016/j.cattod.2017.05.038

    Article  CAS  Google Scholar 

  12. Bhaskaruni SVHS, Maddila S, van Zyl WE, Jonnalagadda SB (2018) Ag2O on ZrO2 as a recyclable catalyst for multicomponent synthesis of indenopyrimidine derivatives. Molecules 23:1648. https://doi.org/10.3390/molecules23071648

    Article  CAS  PubMed Central  Google Scholar 

  13. Reddy BM, Sreekanth PM, Yamada Y, Kobayashi T (2005) Modification of the acid properties of silica–zirconia aerogels by in situ and ex situ sulfation. J Mol Catal A Chem 227:81–89. https://doi.org/10.1016/j.molcata.2004.10.011

    Article  CAS  Google Scholar 

  14. Rosenberg DJ, Coloma F, Anderson JA (2002) Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3–ZrO2 solid acid catalysts. J Catal 210:218–228. https://doi.org/10.1006/jcat.2002.3656

    Article  CAS  Google Scholar 

  15. Shibata K, Kitoura T, Kitagawa J, Sumiyoshi T, Tanabe K (1973) Acidic properties of binary metal oxides. Bull Chem Soc Jpn 46:2985–2988

    Article  CAS  Google Scholar 

  16. Arata K, Akutagawa S, Tanabe K (1976) Epoxide rearrangement III. Isomerization of 1-methylcyclohexene oxide over TiO2–ZrO2, NiSO4 and FeSO4. Bull Chem Soc Jpn 49:390–393

    Article  CAS  Google Scholar 

  17. Vignesh K, Priyanka R, Rajarajan M, Suganthi A (2013) Photoreduction of Cr(VI) in water using Bi2O3–ZrO2 nanocomposite under visible light irradiation. Mater Sci Eng B 178:149–157. https://doi.org/10.1016/j.mseb.2012.10.035

    Article  CAS  Google Scholar 

  18. Banik BK, Reddy AT, Datta A, Mukhopadhyay C (2007) Microwave-induced bismuth nitrate-catalyzed synthesis of dihydropyrimidones via Biginelli condensation under solvent less conditions. Tetrahedron Lett 48:7392–7394. https://doi.org/10.1016/j.tetlet.2007.08.007

    Article  CAS  Google Scholar 

  19. Kuznetsov ML, Rocha BGM, Pombeiro AJL, Shulpin GB (2015) Oxidation of olefins with hydrogen peroxide catalyzed by bismuth salts: a mechanistic study. ACS Catal 5:3823–3835

    Article  CAS  Google Scholar 

  20. Worrell BT, Ellery SP, Fokin VV (2013) Copper(I)-catalyzed cycloaddition of bismuth(III) acetylides with organic azides: synthesis of stable triazole anion equivalents. Angew Chem Int Ed 52:13037–13041. https://doi.org/10.1002/anie.201306192

    Article  CAS  Google Scholar 

  21. Bhaskaruni SVHS, Maddila S, van Zyl WE, Jonnalagadda SB (2018) An efficient and green approach for the synthesis of 2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates using Bi2O3/ZrO2 as a reusable catalyst. RSC Adv 8:16336–16343. https://doi.org/10.1039/c8ra01994k

    Article  CAS  Google Scholar 

  22. Almasirad A, Tabatabai SA, Faizi M, Kebriaeezadeh A, Mehrabi N, Dalvandi A, Shafiee A (2004) Synthesis and anticonvulsant activity of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg Med Chem Lett 14:6057–6059. https://doi.org/10.1016/j.bmcl.2004.09.072

    Article  CAS  PubMed  Google Scholar 

  23. Kamel MM, Abdo NYM (2014) Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. Eur J Med Chem 86:75–80. https://doi.org/10.1016/j.ejmech.2014.08.047

    Article  CAS  PubMed  Google Scholar 

  24. Suleymanoglu N, Ustabas R, Direkel S, Alpaslan YB, Unver Y (2017) 1,2,4-Triazole derivative with Schiff base; thiol–thione tautomerism, DFT study and antileishmanial activity. J Mol Struct 1150:82–87. https://doi.org/10.1016/j.molstruc.2017.08.075

    Article  CAS  Google Scholar 

  25. Nayak N, Ramprasad J, Dalimba U, Yogeeswari P, Sriram D, Kumar HSS, Peethambar SK, Achur R (2015) Synthesis of new pyrazole–triazole hybrids by click reaction using a green solvent and evaluation of their antitubercular and antibacterial activity. Res Chem Intermed 42:3721–3741. https://doi.org/10.1007/s11164-015-2241-9

    Article  CAS  Google Scholar 

  26. Li Y, Tian H, Zhao DS, Hu D, Liu XY, Jin HW, Song GP, Cui ZN (2016) Synthesis and bioactivity of pyrazole and triazole derivatives as potential PDE4 inhibitors. Bioorg Med Chem Lett 26:3632–3635. https://doi.org/10.1016/j.bmcl.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  27. Pore DM, Hegade PG, Mane MM, Patil JD (2013) The unprecedented synthesis of novel spiro-1,2,4-triazolidinones. RSC Adv 3:25723–25726. https://doi.org/10.1039/c3ra44641g

    Article  CAS  Google Scholar 

  28. Korade SN, Patil JD, Pore DM (2016) Novel task-specific ionic liquid for room temperature synthesis of spiro-1,2,4-triazolidine-3-thiones. Monatsh Chem 147:2143–2149. https://doi.org/10.1007/s00706-016-1740-8

    Article  CAS  Google Scholar 

  29. Mane MM, Pore DM (2014) A novel one pot multi-component strategy for facile synthesis of 5-aryl-[1,2,4]triazolidine-3-thiones. Tetrahedron Lett 55:6601–6604. https://doi.org/10.1016/j.tetlet.2014.10.052

    Article  CAS  Google Scholar 

  30. Patil PB, Patil JD, Korade SN, Kshirsagar SD, Govindwar SP, Pore DM (2016) An efficient synthesis of anti-microbial 1,2,4-triazole-3-thiones promoted by acidic ionic liquid. Res Chem Intermed 42:4171–4180. https://doi.org/10.1007/s11164-015-2267-z

    Article  CAS  Google Scholar 

  31. Patil JD, Pore DM (2014) [C16MPy]AlCl3Br: an efficient novel ionic liquid for synthesis of novel 1,2,4-triazolidine-3-thiones in water. RSC Adv 4:4314–14319. https://doi.org/10.1039/c3ra46916f

    Article  CAS  Google Scholar 

  32. Ramesh R, Lalitha A (2015) PEG-assisted two-component approach for the facile synthesis of 5-aryl-1,2,4-triazolidine-3-thiones under catalyst-free conditions. RSC Adv 5:51188–51192. https://doi.org/10.1039/c5ra07726e

    Article  CAS  Google Scholar 

  33. Ramesh R, Lalitha A (2016) Facile and green chemistry access to 5-aryl-1,2,4-triazolidine-3-thiones in aqueous medium. ChemistrySelect 1:2085–2089. https://doi.org/10.1002/slct.201600348

    Article  CAS  Google Scholar 

  34. Nagaraju S, Satyanarayana N, Paplal B, Vasu AK, Kanvah S, Kashinath D (2015) Synthesis of functionalized isoxazole–oxindole hybrids via on water, catalyst free vinylogous Henry and 1,6-Michael addition reactions. RSC Adv 5:81768–81773. https://doi.org/10.1039/c5ra14039k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the National Research Foundation (South Africa) for financial support and University of KwaZulu-Natal for the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekantha B. Jonnalagadda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerru, N., Bhaskaruni, S.V.H.S., Gummidi, L. et al. Efficient synthesis of novel pyrazole-linked 1,2,4-triazolidine-3-thiones using bismuth on zirconium oxide as a recyclable catalyst in aqueous medium. Mol Divers 24, 345–354 (2020). https://doi.org/10.1007/s11030-019-09957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09957-0

Keywords

Navigation