Skip to main content
Log in

Iodine/potassium iodide catalyst for the synthesis of trifluoromethylated quinazolines via intramolecular cyclization of 2,2,2-trifluoro-N-benzyl-N′-arylacetimidamides

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An efficient and simple protocol for the synthesis of trifluoromethylated quinazolines has been described by I2-/KI-promoted oxidative C(sp3)–C(sp2) bond under the optimal oxidative cyclization reaction conditions. The required 2,2,2-trifluoro-N-benzyl-N′-arylacetimidamides are readily prepared from the corresponding acetimidoyl chlorides and benzylamines under a nucleophilic substitution reaction in the form of in situ. The merits of this protocol are the use of inexpensive molecular iodine, metal-free oxidative coupling and good to excellent yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Scheme 5

Similar content being viewed by others

References

  1. Ugale VG, Bari SB (2014) Quinazolines: new horizons in anticonvulsant therapy. Eur J Med Chem 80:447–501. https://doi.org/10.1016/j.ejmech.2014.04.072

    Article  CAS  PubMed  Google Scholar 

  2. Alafeefy AM, Kadi AA, Al-Deeb OA, El-Tahir KE, Aljaber NA (2010) Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur J Med Chem 45:4947–4952. https://doi.org/10.1016/j.ejmech.2010.07.067

    Article  CAS  PubMed  Google Scholar 

  3. Marzaro G, Guiotto A, Chilin A (2012) Quinazoline derivatives as potential anticancer agents: a patent review (2007–2010). Expert Opin Ther Pat 22:223–252. https://doi.org/10.1517/13543776.2012.665876

    Article  CAS  PubMed  Google Scholar 

  4. Mahdavi M, Lotfi V, Saeedi M, Kianmehr E, Shafiee A (2016) Synthesis of novel fused quinazolinone derivatives. Mol Divers 20:677–685. https://doi.org/10.1007/s11030-016-9675-x

    Article  CAS  PubMed  Google Scholar 

  5. Khan I, Ibrar A, Abbas N, Saeed A (2014) Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur J Med Chem 76:193–244. https://doi.org/10.1016/j.ejmech.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  6. Ge WL, Zhu X, Wei YY (2013) Iodine-catalyzed oxidative system for cyclization of primary alcohols with o-aminobenzamides to quinazolinones using DMSO as the oxidant in dimethyl carbonate. RSC Adv 3:10817–10822. https://doi.org/10.1039/C3RA40872H

    Article  CAS  Google Scholar 

  7. Machara A, Lux V, Kozisek M, Grantz-Saskova K, Stepanek O, Kotora M, Parkan K, Pavova M, Glass B, Sehr PJ (2016) Specific inhibitors of HIV capsid assembly binding to the c-terminal domain of the capsid protein: evaluation of 2-arylquinazolines as potential antiviral compounds. Med Chem 59:545–558. https://doi.org/10.1021/acs.jmedchem.5b01089

    Article  CAS  Google Scholar 

  8. Liu LT, Yuan TT, Liu HH (2007) Synthesis and biological evaluation of substituted 6-alkynyl-4-anilinoquinazoline derivatives as potent EGFR inhibitors. Bioorg Med Chem Lett 17:6373. https://doi.org/10.1016/j.bmcl.2007.08.061

    Article  CAS  PubMed  Google Scholar 

  9. Michael JP (2008) Quinoline, quinazoline and acridone alkaloids Nat. Prod Rep 25:166. https://doi.org/10.1039/B612168N

    Article  CAS  Google Scholar 

  10. Luth A, Lowe W (2008) Syntheses of 4-(indole-3-yl)quinazolines-A new class of epidermal growth factor receptor tyrosine kinase inhibitors. Eur J Med Chem 43:1478. https://doi.org/10.1016/j.ejmech.2007.09.018

    Article  CAS  PubMed  Google Scholar 

  11. Fang J, Zhou JG, Fang ZJ (2013) Synthesis of 2-substituted quinazolines via iridium catalysis. RSC Adv 3:334. https://doi.org/10.1039/C2RA22278G

    Article  CAS  Google Scholar 

  12. Zhang J, Yu C, Wang S, Wan C, Wang Z (2010) A novel and efficient methodology for the construction of quinazolines based on supported copper oxide nanoparticles. Chem Commun 46:5244–5246. https://doi.org/10.1039/C002454F

    Article  CAS  Google Scholar 

  13. Panja SK, Saha S (2013) Recyclable, magnetic ionic liquid bmim[FeCl4]-catalyzed, multicomponent, solvent-free, green synthesis of quinazolines. RSC Adv 3:14495. https://doi.org/10.1039/C3RA42039F

    Article  CAS  Google Scholar 

  14. Portela-Cubillo F, Scott JS, Walton JC (2009) Microwave-promoted syntheses of quinazolines and dihydroquinazolines from 2-aminoarylalkanone O-phenyl oximes. J Org Chem 74:4934–4942. https://doi.org/10.1021/jo900629g

    Article  CAS  PubMed  Google Scholar 

  15. Ju J, Hua R, Su J (2012) Copper-catalyzed three-component one-pot synthesis of quinazolines. Tetrahedron 68:9364–9370. https://doi.org/10.1016/j.tet.2012.09.035

    Article  CAS  Google Scholar 

  16. Truong VL, Morrow M (2010) Mild and efficient ligand-free copper-catalyzed condensation for the synthesis of quinazolines. Tetrahedron Lett 51:758–760. https://doi.org/10.1016/j.tetlet.2009.11.133

    Article  CAS  Google Scholar 

  17. Malakar CC, Baskakova A, Conrad J, Beifuss U (2012) Copper-catalyzed synthesis of quinazolines in water starting from o-Bromobenzylbromides and Benzamidines. Chem Eur J 18:8882–8885. https://doi.org/10.1002/chem.201200583

    Article  CAS  PubMed  Google Scholar 

  18. Omar MA, Conrad J, Beifuss U (2014) Assembly of 4H-chromenes, imidazobenzothiazines and quinazolines via copper-catalyzed domino reactions using 2-halobenzyl tosylates as substrates. Tetrahedron 70:5682–5695. https://doi.org/10.1016/j.tet.2014.06.071

    Article  CAS  Google Scholar 

  19. Omar MA, Conrad J, Beifuss U (2014) Copper-catalyzed domino reaction between 1-(2-halophenyl) methanamines and amidines or imidates for the synthesis of 2-substituted quinazolines. Tetrahedron 70:3061–3072. https://doi.org/10.1016/j.tet.2014.02.066

    Article  CAS  Google Scholar 

  20. Lin JP, Zhang FH, Long YQ (2014) Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org Lett 16:2822. https://doi.org/10.1021/ol500864r

    Article  CAS  PubMed  Google Scholar 

  21. Wang CS, Li F, Liu HX, Jiang YY, Fu H (2010) Copper-catalyzed synthesis of quinazoline derivatives via Ullmann-type coupling and aerobic oxidation. J Org Chem 75:7936. https://doi.org/10.1021/jo101685d

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Guo F, Wang F, Zhao N, Liu L, Li J, Wang ZH (2014) Synthesis of quinazolines via CuO nanoparticles catalyzed aerobic oxidative coupling of aromatic alcohols and amidines. Org Biomol Chem 12:5752. https://doi.org/10.1039/C4OB00569D

    Article  CAS  PubMed  Google Scholar 

  23. Zhao D, Shen Q, Li JX (2015) Potassium iodide-catalyzed three-component synthesis of 2-arylquinazolines via amination of benzylic C–H bonds of methylarenes. Adv Synth Catal 357:339. https://doi.org/10.1002/adsc.201400827

    Article  CAS  Google Scholar 

  24. Lv Z, Wang B, Hu Z, Zhou Y, Yu W, Chang J (2016) Synthesis of quinazolines from N,N′-disubstituted amidines via I2/KI-mediated oxidative C–C bond formation. J Org Chem 81:9924–9930. https://doi.org/10.1021/acs.joc.6b02100

    Article  CAS  PubMed  Google Scholar 

  25. Rahmani F, Darehkordi A (2017) Synthesis of trifluoromethylated pyrroles via a one-pot three-component reaction. Synlett 28:1224–1226. https://doi.org/10.1055/s-0036-1588732

    Article  CAS  Google Scholar 

  26. Darehkordi A, Rahmani F, Hashemi V (2013) Synthesis of new trifluoromethylated indole derivatives. Tetrahedron Lett 54:4689–4692. https://doi.org/10.1016/j.tetlet.2013.06.093

    Article  CAS  Google Scholar 

  27. Darehkordi A, Rahmani F (2016) Synthesis of new α-trifluoromethyl substituted formamidines framework by using N-nucleophiles and N, S bidentate nucleophiles. J Fluorine Chem 190:41–47. https://doi.org/10.1016/j.jfluchem.2016.08.010

    Article  CAS  Google Scholar 

  28. Pang X, Chen C, Su X, Li M, Wen L (2014) Diverse tandem cyclization reactions of o-cyanoanilines and diaryliodonium salts with copper catalyst for the construction of quinazolinimine and acridine scaffolds. Org Lett 16:6228. https://doi.org/10.1021/ol503156g

    Article  CAS  PubMed  Google Scholar 

  29. Liu Q, Zhao YF, Fu H, Cheng CM (2013) Copper-catalyzed sequential n-arylation and aerobic oxidation: synthesis of quinazoline derivatives. Synlett 24:2089. https://doi.org/10.1055/s-0033-1339800

    Article  CAS  Google Scholar 

  30. Liu Q, Zhang Q (2013) Copper-catalyzed annulation of amidines for quinazoline synthesis. Chem Commun 49:6439. https://doi.org/10.1039/C3CC43129K

    Article  Google Scholar 

  31. Finkbeiner P, Nachtsheim B (2013) Iodine in modern oxidation catalysis. J. Synth 45:979. https://doi.org/10.1055/s-0032-1318330

    Article  CAS  Google Scholar 

  32. Guo X, Pan S, Liu J, Li ZJ (2009) One-pot synthesis of symmetric and unsymmetric 1,1-bis-indolylmethanes via tandem iron-catalyzed C–H bond oxidation and C–O bond cleavage. Org Chem 74:8848. https://doi.org/10.1021/jo902093p

    Article  CAS  Google Scholar 

  33. Li H, He Z, Guo X, Li W, Zhao X, Li Z (2009) Iron-catalyzed selective oxidation of n-methyl amines: highly efficient synthesis of methylene-bridged bis-1,3-dicarbonyl compounds. Org Lett 11:4176. https://doi.org/10.1021/ol901751c

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Cao L, Li C (2007) FeCl2-catalyzed selective C–C bond formation by oxidative activation of a benzylic C–H bond. J Angew Chem Int Ed 46:6505

    Article  CAS  Google Scholar 

  35. Parvatkar PT, Parameswaran PS, Tilve SG (2012) FeCL2-catalyzed selective C-C bond formation by oxidative activation of a benzylic C–H bond. Chem Eur J 18:5460–5489. https://doi.org/10.1002/anie.200701782

    Article  CAS  PubMed  Google Scholar 

  36. Cheng X, Wang H, Xiao F, Deng GJ (2016) Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde. Green Chem 18:5773–5776. https://doi.org/10.1039/C6GC02319C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Vail-e-Asr University of Rafsanjan Faculty Research Grant for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Darehkordi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darehkordi, A., Kazemi, E. Iodine/potassium iodide catalyst for the synthesis of trifluoromethylated quinazolines via intramolecular cyclization of 2,2,2-trifluoro-N-benzyl-N′-arylacetimidamides. Mol Divers 24, 131–139 (2020). https://doi.org/10.1007/s11030-019-09933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09933-8

Keywords

Navigation