Skip to main content
Log in

One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Scheme 5

Similar content being viewed by others

References

  1. Liang B, Kalidindi S, Porco JA Jr, Stephenson CR (2000) Multicomponent reaction discovery: three-component synthesis of spirooxindoles. Org Lett 12:572–575. https://doi.org/10.1021/ol902764k

    Article  CAS  Google Scholar 

  2. Ganem B (2009) Strategies for innovation in multicomponent reaction design. Acc Chem Res 42:463–472. https://doi.org/10.1021/ar800214s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cui SL, Lin XF, Wang YG (2006) Novel and efficient synthesis of iminocoumarins via copper-catalyzed multicomponent reaction. Org Lett 8:4517–4520. https://doi.org/10.1021/ol061685w

    Article  PubMed  CAS  Google Scholar 

  4. Kriis K, Ausmees K, Pehk T, Lopp M, Kanger T (2010) A novel diastereoselective multicomponent cascade reaction. Org Lett 12:2230–2233. https://doi.org/10.1021/ol1005714

    Article  PubMed  CAS  Google Scholar 

  5. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. https://doi.org/10.1021/cr0505728

    Article  PubMed  CAS  Google Scholar 

  6. Banfi L, Riva R (2005) The Passerini reaction. Org React 65:1–140. https://doi.org/10.1002/0471264180.or065.01

    Article  CAS  Google Scholar 

  7. Lu K, Luo T, Xiang Z, You Z, Fathi R, Chen J, Yang Z (2005) A concise and diversity-oriented strategy for the synthesis of benzofurans and indoles via Ugi and Diels–Alder reactions. J Comb Chem 7:958–967. https://doi.org/10.1021/cc050099b

    Article  PubMed  CAS  Google Scholar 

  8. Bienaymé H, Hulme C, Oddon G, Schmidt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6:3321–3329. https://doi.org/10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A

  9. Orru RVA, Greef MDE (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis https://doi.org/10.1055/s-2003-40507

  10. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

  11. Lee D, Sello JK, Schreiber SL (2000) Pairwise use of complexity-generating reactions in diversity-oriented organic synthesis. Org Lett 2:709–712. https://doi.org/10.1021/ol005574n

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong RW, Combs AP, Tempest PA, Brown AD, Thomas AK (1996) Multiple-component condensation strategies for combinatorial synthesis. Acc Chem Res 29:123–131. https://doi.org/10.1021/ar950209v

    Article  CAS  Google Scholar 

  13. Ugi I, Werner B, Dömling A (2003) The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53–66. https://doi.org/10.3390/80100053

    Article  CAS  Google Scholar 

  14. Hall DG, Manku S, Wang F (2001) Solution- and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J Comb Chem 3:125–150. https://doi.org/10.1021/cc0001001

    Article  PubMed  CAS  Google Scholar 

  15. Nicolaou KC, Pfefferkorn JA, Mitchell HJ, Roecker AJ, Barluenga S, Cao GQ, Affleck RL, Lillig JE (2000) Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split- and-pool chemistry using nanokans and optical encoding. J Am Chem Soc 122:9954–9967. https://doi.org/10.1021/ja002034c

    Article  CAS  Google Scholar 

  16. Wipt P, Reeves JT, Balachandran R, Giuliano KA, Hamel E, Day BW (2000) Synthesis and biological evaluation of a focused mixture library of analogues of the antimitotic marine natural product Curacin A. J Am Chem Soc 122:9391–9395. https://doi.org/10.1021/ja002213u

    Article  CAS  Google Scholar 

  17. Boger DL, Fink BE, Hedrick MP (2000) Total synthesis of distamycin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J Am Chem Soc 122:6382–6394. https://doi.org/10.1021/ja994192d

    Article  CAS  Google Scholar 

  18. Ghandi M, Sherafat F, Sadeghzadeh M, Alirezapour B (2016) One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives. Bioorg Med Chem Lett 26:2676–2679. https://doi.org/10.1016/j.bmcl.2016.04.010

    Article  PubMed  CAS  Google Scholar 

  19. Ghandi M, Zarezadeh N, Abbasi A (2016) One-pot tandem Ugi-4CR/S\(N\)Ar approach to highly functionalized quino[2,3-\(b\)][1,5]benzoxazepines. Mol Divers 20:483–495. https://doi.org/10.1007/s11030-015-9651-x

    Article  PubMed  CAS  Google Scholar 

  20. Azuaje J, Pérez-Rubio JM, Yaziji V, El Maatougui A, González-Gomez JC, Sánchez- Pedregal VM, Navarro-Vázquez A, Masaguer CF, Teijeira M, Sotelo E (2015) Integrated Ugi-based assembly of functionally, skeletally, and stereochemically diverse 1,4-benzodiazepin-2-ones. J Org Chem 80:1533–1549. https://doi.org/10.1021/jo502382q

    Article  PubMed  CAS  Google Scholar 

  21. Xu Z, De Moliner F, Cappelli AP, Hulme C (2013) Aldol reactions in multicomponent reaction based domino pathways: a multipurpose enabling tool in heterocyclic chemistry. Org Lett 15:2738–2741. https://doi.org/10.1021/ol401068u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Che C, Li S, Yu SZ, Li F, Xin S, Zhou L, Lin S, Yang Z (2013) One-pot syntheses of isoquinolin-3-ones and benzo-1,4-diazepin-2,5-diones utilizing Ugi-4CR post-transformation strategy. ACS Comb Sci 15:202–207. https://doi.org/10.1021/co400001h

    Article  PubMed  CAS  Google Scholar 

  23. Sinha MK, Khoury K, Herdtweckb E, Dömling A (2013) Various cyclization scaffolds by a truly Ugi 4-CR. Org Biomol Chem 11:4792–4796. https://doi.org/10.1039/C3OB40523K

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ghandi M, Zarezadeh N, Abbasi A (2015) One-pot synthesis of spiropyrroloquinolineisoindolinone and their aza-analogs via the Ugi-4CR/metal-free intramolecular bis-annulation process. Org Biomol Chem 13:8211–8220. https://doi.org/10.1039/c5ob01095k

  25. Medda F, Martinez-Ariza G, Hulme C (2015) A facile and concise route toward the synthesis of novel imidazo-tetrazolodiazepinones via post-condensation modifications of the Ugi-azide adduct. Tetrahedron Lett 56:5295–5298. https://doi.org/10.1016/j.tetlet.2015.07.083

    Article  CAS  Google Scholar 

  26. Cano PA, Islas-Jácome A, González-Marrero J, Yépez-Mulia L, Calzada F, Gámez- Montaño R (2014) Synthesis of 3-tetrazolylmethyl-4\(H\)-chromen-4-ones via Ugi- azide and biological evaluation against Entamoeba histolytica, Giardia lamblia and Trichomona vaginalis. Bioorg Med Chem 22:1370–1376. https://doi.org/10.1016/j.bmc.2013.12.069

    Article  PubMed  CAS  Google Scholar 

  27. Safa KD, Shokri T, Abbasi H, Teimuri-Mofrad R (2014) One-pot synthesis of new 1,5-disubstituted tetrazoles bearing 2,2-bis(trimethylsilyl)ethenyl groups via the Ugi four-component condensation reaction catalyzed by \(\text{ MgBr }_{2}\cdot \)2\(\text{ Et }_{2}\)O. J Heterocycl Chem 51:80–84. https://doi.org/10.1002/jhet.1858

    Article  CAS  Google Scholar 

  28. Gunn SJ, Baker A, Bertram RD, Warriner SL (2007) A novel approach to the solid-phrase synthesis of peptides with a tetrazole at the C-terminus. Synlett 2643–2646. https://doi.org/10.1055/s-2007-986661

  29. Gunawan S, Hulme C (2013) Bifunctional building blocks in the Ugi-azide condensation reaction: a general strategy toward exploration of new molecular diversity. Org Biomol Chem 11:6036–6046. https://doi.org/10.1039/C3OB40900G

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ramezanpour S, Balalaie S, Rominger F, Alavijeh NS, Bijanzadeh HR (2013) Facile, efficient and diastereoselective synthesis of \(\alpha \)-hydrazine tetrazoles through a novel one-pot four-component reaction. Tetrahedron 69:10718–10723. https://doi.org/10.1016/j.tet.2013.10.062

    Article  CAS  Google Scholar 

  31. Lin XF, Li Y, Li SY, Xiao ZK, Lu JM (2012) NHC-Pd(II)-Im (NHC = \(N\)-heterocyclic carbene, Im = 1-methylimidazole) complex catalyzed coupling reaction of arylboronic acids with carboxylic acid anhydrides in water. Tetrahedron 68:5806–5809. https://doi.org/10.1016/j.tet.2012.05.016

    Article  CAS  Google Scholar 

  32. El Kaim L, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65:2153–2171. https://doi.org/10.1016/j.tet.2008.12.002

    Article  CAS  Google Scholar 

  33. Marcos SF, Marcaccini S, Menchi G, Pepinob R, Torroba T (2008) Studies on isocyanides: synthesis of tetrazolyl-isoindolinones via tandem Ugi four-component condensation/intramolecular amidation. Tetrahedron Lett 49:149–152. https://doi.org/10.1016/j.tetlet.2007.10.154

    Article  CAS  Google Scholar 

  34. Soeta T, Tamura K, Fujinami S, Ukaji Y (2013) A three-component reaction of \(C,N\)-cyclic \(N^{\prime }\)-acyl azomethine imines, isocyanides, and azide compounds: effective synthesis of 1,5-disubstituted tetrazoles with tetrahydroisoquinoline skeletons. Org Biomol Chem 11:2168–2174. https://doi.org/10.1039/C3OB27297D

    Article  PubMed  CAS  Google Scholar 

  35. Shinde AH, Archith N, Srilaxmi M, Sharada DS (2014) Four-component, five- centered, one-pot synthesis of 1-(1\(H\)-tetrazol-5-yl)-2,3,4,9-tetrahydro-1\(H\)-pyrido[3,4- \(b\)]indole derivatives. Tetrahedron Lett 55:6821–6826. https://doi.org/10.1016/j.tetlet.2014.10.076

    Article  CAS  Google Scholar 

  36. Reddy BVS, Kota K, Rao BM, Sridhar B, Mukkanti K (2016) Four-component, five- centered, one-pot synthesis of 1-(1\(H\)-tetrazol-5-yl)-2,3,4,9-tetrahydro-1\(H\)-pyrido[3,4- \(b\)]indole derivatives. Tetrahedron Lett 57:4529–4532. https://doi.org/10.1016/j.tetlet.2016.08.067

    Article  CAS  Google Scholar 

  37. Nixey T, Kelly M, Hulme C (2000) The one-pot solution phase preparation of fused tetrazole-ketopiperazines. Tetrahedron Lett 41:8729–8733. https://doi.org/10.1016/S0040-4039(00)01563-X

    Article  CAS  Google Scholar 

  38. Hulme C, Gore V (2003) “Multi-component reactions: emerging chemistry in drug discovery" from xylocain to crixivan. Curr Med Chem 10:51–80. https://doi.org/10.2174/0929867033368600

    Article  PubMed  CAS  Google Scholar 

  39. Gunawan S, Ayaz M, De Moliner F, Frett B, Kaiser C, Patrick N, Xu Z, Hulme C (2012) Synthesis of tetrazolo-fused benzodiazepines and benzodiazepinones by a two-step protocol using an Ugi-azide reaction for initial diversity generation. Tetrahedron 68:5606–5611. https://doi.org/10.1016/j.tet.2012.04.068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Maleki A, Sarvary A (2015) Synthesis of tetrazoles via isocyanide-based reactions. RSC Adv 5:60938–60955. https://doi.org/10.1039/C5RA11531K

    Article  CAS  Google Scholar 

  41. Cárdenas-Galindo LE, Islas-Jácome A, Colmenero-Martínez KM, Martínez-Richa A, Gámez-Montaño R (2015) Synthesis of novel bis-1,5-disubstituted-1\(H\)-tetrazoles by an efficient catalyst-free Ugi-azide repetitive process. Molecules 20:1519–1526. https://doi.org/10.3390/molecules20011519

    Article  PubMed  CAS  Google Scholar 

  42. Beusen DD, Zabrocki J, Slomczynska U, Head RD, Kao J, Marshall GR (1995) Conformational mimicry: synthesis and solution conformation of a cyclic somatostatin hexapeptide containing a tetrazole cis amide bond surrogate. Biopolymers 36:181–200. https://doi.org/10.1002/bip.360360207

    Article  PubMed  CAS  Google Scholar 

  43. Zabrocki J Jr, Dunbar JB, Marshall KW, Toth MV, Marshall GR (1992) Conformational mimicry. 3. Synthesis and incorporation of 1,5-disubstituted tetrazole dipeptide analogs into peptides with preservation of chiral integrity: bradykinin. J Org Chem 57:202–209. https://doi.org/10.1021/jo00027a038

    Article  CAS  Google Scholar 

  44. Zabrocki J, Smith GD, Dunbar JB, Iijima JH, Marshall GR (1988) Conformational mimicry. 1. 1,5-Disubstituted tetrazole ring as a surrogate for the cis amide bond. J Am Chem Soc 110:5875–5880. https://doi.org/10.1021/ja00225a045

    Article  CAS  Google Scholar 

  45. Nagai SI, Ueda T, Sugiura S, Nagatsu A, Murakami N, Sakakibara J, Fujita M, Hotta Y (1998) Synthesis and central nervous system stimulant activity of 5,8-methanoquinazolines fused with 1,2,4-triazole, tetrazole and 1,2,4-triazine. J Heterocycl Chem 35:325–327. https://doi.org/10.1002/jhet.5570350211

    Article  CAS  Google Scholar 

  46. Yan YD, Kim HK, Seo KH, Lee WS, Lee GS, Woo JS, Yong CS, Choi HG (2010) The physicochemical properties, in vitro metabolism and pharmacokinetics of a novel ester prodrug of EXP3174. Mol Pharm 7:2132–2140. https://doi.org/10.1021/mp100166c

    Article  PubMed  CAS  Google Scholar 

  47. Senthil Kumar N, Reddy SB, Sinha BK, Mukkantiand K, Dandala R (2009) New and improved manufacturing process for valsartan. Org Process Res Dev 13:1185–1189. https://doi.org/10.1021/op9000912

    Article  CAS  Google Scholar 

  48. Tatsushima Y, Egashira N, Matsushita N, Kurobe K, Kawashiri T, Yano T, Oishi R (2011) Pemirolast reduces cisplatin-induced kaolin intake in rats. Eur J Pharmacol 661:57–62. https://doi.org/10.1016/j.ejphar.2011.04.026

    Article  PubMed  CAS  Google Scholar 

  49. Pandeeswaran M, El-Mossalamy EH, Elango KP (2011) Spectroscopic studies on the interaction of cilostazole with iodine and 2,3-dichloro-5,6-dicyanobenzoquinone. Spectrochim Acta A 78:375–382. https://doi.org/10.1016/j.saa.2010.023

    Article  CAS  Google Scholar 

  50. Huynh MHV, Coburn MD, Meyer TJ, Wetzler M (2006) Green primary explosives: 5-Nitrotetrazolato-\(N^{2}\)-ferrate hierarchies. Proc Natl Acad Sci USA 103:10322–10327. https://doi.org/10.1073/pnas.0604241103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gao EQ, Liu N, Cheng AL, Gao S (2007) Novel frustrated magnetic lattice based on triangular [\(\text{ Mn }_{3}(\mu _{3}\)-F)] clusters with tetrazole ligands. Chem Commun. https://doi.org/10.1039/b701840a

  52. Likhosherstov AM, Filippova OV, Peresada VP, Kryzhanovskii SA, Vititnova MB, Kaverina NV, Reznikov KM (2003) Azacycloalkanes. XXXIV. synthesis and antiarrhythmic activity of 2-(2\(\prime \)-R-2\(\prime \)-hydroxyethyl)-1,2,3,4-tetra-hydro-pyrrolo-[1,2-a]pyrazines. Pharm Chem J 37:6–9. https://doi.org/10.1023/A:1023634625558

    Article  CAS  Google Scholar 

  53. Seredenin SB, Voronina TA, Likhosherstov AM, Peresada YP, Molodavkin GM, Halikas (1995) 1,2,3,4-tetrahydropyrrolo-[1,2-\(a\)]-pyrazine derivatives. U.S. Patent 5,378,846

  54. Abou-Gharbia M, Freed ME, McCaully RJ, Silver PJ, Wendt RL (1984) Tetrahydropyrrolo[1,2-a]quinoxalines and tetrahydropyrrolo[1,2-a]pyrido[3,2-a]pyrazines: vascular smooth muscle relaxants and antihypertensive agents. J Med Chem 27:1743–1746. https://doi.org/10.1021/jm00378a039

    Article  PubMed  CAS  Google Scholar 

  55. HeY Lin M, Li Z, Liang X, Li G, Antilla JC (2011) Direct synthesis of chiral 1,2,3,4-tetrahydropyrrolo[1,2-\(a\)]pyrazines via a catalytic asymmetric intramolecular aza-Friedel–Crafts reaction. Org Lett 1:4490–4493. https://doi.org/10.1021/ol2018328

    Article  CAS  Google Scholar 

  56. Katritzky AR, Jain R, Xu YJ, Steel PJ (2002) Novel routes to 1,2,3,4- tetrahydropyrrolo[1,2-\(a\)]pyrazines and 5,6,9,10,11,11a-hexahydro-8\(H\)-pyrido[1,2- \(a\)]pyrrolo[2,1-\(c\)]pyrazines. J Org Chem 67:8220–8223. https://doi.org/10.1021/jo020371t

    Article  PubMed  CAS  Google Scholar 

  57. Ghandi M, Sherafat F (2017) Expedient access to novel bis-tetrazolopiperazines via Ugi-azide reactions. J Heterocycl Chem 54:1396–1403. https://doi.org/10.1002/jhet.2720

    Article  CAS  Google Scholar 

  58. Ghandi M, Rahimi S, Zarezadeh N (2017) Synthesis of novel tetrazole containing Quinoline and 2,3,4,9-tetrahydro-1H-\(\beta \)-carboline derivatives. J Heterocycl Chem 54:102–109. https://doi.org/10.1002/jhet.2546

    Article  CAS  Google Scholar 

  59. Ghandi M, Salahi S, Hasani M (2011) A mild, expedient, one-pot trifluoromethanesulfonic anhydride mediated synthesis of \(N\)-arylimidates. Tetrahedron Lett 52:270–273. https://doi.org/10.1016/j.tetlet.2010.11.019

    Article  CAS  Google Scholar 

  60. Ghandi M, Hasani M, Salahi S (2012) Expedient one-pot synthesis of \(N\)- aryliminoethers via mild electrophilic activation of secondary amides. Monatsh Chem 143:455–460. https://doi.org/10.1007/s00706-011-0603-6

    Article  CAS  Google Scholar 

  61. Ghandi M, Jameá AH (2011) Pyridine-mediated, one-pot, stereoselective synthesis of acyclic enaminones. Tetrahedron Lett 52:4005–4007. https://doi.org/10.1016/j.tetlet.2011.05.112

    Article  CAS  Google Scholar 

  62. Gualandi A, Cerisoli L, Monari M, Savoia D (2011) Asymmetric synthesis of 1- substituted 1,2,3,4-tetrahydropyrrolo[1,2-\(a\)]pyrazines. Synthesis https://doi.org/10.1055/s-0030-1258436

  63. Hashimoto T, Omote M, Maruoka K (2011) Asymmetric inverse-electron-demand 1,3-dipolar cycloaddition of C, N-cyclic azomethine imines: an umpolung strategy. Angew Chem Int Ed 50:3489–3492. https://doi.org/10.1002/anie.201100331

    Article  CAS  Google Scholar 

  64. Hashimoto T, Maeda Y, Omote M, Nakatsu H, Maruoka K (2010) Catalytic enantioselective 1,3-dipolar cycloaddition of C, N-cyclic azomethine imines with \(\alpha \),\(\beta \)- unsaturated aldehydes. J Am Chem Soc 132:4076–4077. https://doi.org/10.1021/ja100787a

  65. Zhang L, Liu H, Qiao G, Hou Z, Liu Y, Xiao Y, Guo H (2015) Phosphine-catalyzed highly enantioselective [3 + 3] cycloaddition of Morita-Baylis-Hillman carbonates with C, N-cyclic azomethine imines. J Am Chem Soc 137:4316–4319. https://doi.org/10.1021/jacs.5b01138

  66. Soeta T, Tamura K, Ukaji Y (2012) [5 + 1] Cycloaddition of \(C, N\)-cyclic \(N\prime \)-acyl azomethine imines with isocyanides. Org Lett 14:1226–1229. https://doi.org/10.1021/ol2034542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the University of Tehran for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghandi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4081 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghandi, M., Salahi, S., Taheri, A. et al. One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process. Mol Divers 22, 291–303 (2018). https://doi.org/10.1007/s11030-017-9801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9801-4

Keywords

Navigation