Skip to main content
Log in

Differential Method for the Formation of Relative Phase Shifts between Light Beams in a Two-Arm Interferometer

  • OPTICAL AND PHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

This article discusses the possibility of improving technical means that enable the introduction of phase shifts into light beams in the interferometer paths. An optical–mechanical phase shift modulator in the form of a plane-parallel glass plate rotated around an axis lying in its plane was adopted as the initial version of these technical means. A differential method is proposed for the formation of relative phase shifts between beams in a two-arm interferometer. A variant of the modulator has been developed in the form of a pair of rigidly interconnected plates, with planes initially rotated at a given angle. In this case, each of the parallel light beams in the interferometer passes through its own plate, and it was revealed that a practically linear relationship is provided between the generated relative phase shift and the total angle of rotation of the plates. A variant of using a single plate as a modulator under the established conditions for the incidence on it of two beams that propagate in different arms of the interferometer is considered. The data of a test experiment confirms the operability of the proposed differential method for controlling the phase shift between light beams. The results obtained will be useful in developing special tools based on the method of digital speckle pattern interferometry for measurements of the displacement fields of deformable bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. V. P. Shchepinov, V. S. Pisarev, et. al., Strain and Stress Analysis by Holographic and Speckle Interferometry, John Wiley & Sons Ltd., Chichester (1996).

    Book  Google Scholar 

  2. I. A. Razumovsky, Interference-Optical Methods of Mechanics of a Deformable Solid Body, study guide, Izdatel’stvo MGTU im. N. E. Baumana, Moscow (2007).

    Google Scholar 

  3. A. Razumovsky, Interference-Optical Methods of Solid Mechanics, Springer, Berlin (2011), https://doi.org/10.1007/978-3-642-11222-5.

    Article  ADS  Google Scholar 

  4. G. T. Reid, Opt. Lasers Eng., 7, No. 7, 53–68 (1986), https://doi.org/10.1016/0143-8166(86)90034-5.

    Article  Google Scholar 

  5. N. G. Vlasov and A. E. Shtan’ko, Phase Step Method, in book Holography: Theoretical and Applied Issues (Proc. of the XXIII School-Symposium on Coherent Optics and Holography, Dolgoprudny, January 24–29, 1994), eds. I. N. Kampants and A. N. Malov, Moscow; Tiraspol: PGKU, pp. 5–11 (1995).

  6. V. I. Guzhov, G. A. Pozdnyakov, and E. E. Serebryakova, Obtaining Phase Difference by Using the Step-by-Step Phase Shift Method, Nauch. Vestn. NGTU, 74, No. 1, 157–166 (2019), https://doi.org/10.17212/1814-1196-2019-1-157-166.

  7. R. Thalmann and R. Dändliker, Appl. Opt., 26, No. 10, 1964–1971 (1987), https://doi.org/10.1364/AO.26.001964.

    Article  ADS  Google Scholar 

  8. V. I. Guzhov, A. G. Kozachok, E. G. Loparev, M. G. Orlov, and V. V. Chernobrovin, Holographic Measuring System for Determining a Phase Difference Field Through the Insertion of a Controlled Phase Shift, Avtometriya, No. 2, 116–118 (1986).

    Google Scholar 

  9. V. I. Guzhov, A. G. Kozachok, E. G. Loparev, M. G. Orlov, and V. V. Chernobrovin, Holographic Measuring System for Determining a Phase Difference Field Through the Insertion of a Controlled Phase Shift, Optoelectron. Instrum. Data Proc., 22, No. 2, 123–125 (1986).

    Google Scholar 

  10. K. Creath, Appl. Opt., 24, No. 18, 3053–3058 (1985), https://doi.org/10.1364/AO.24.003053.

    Article  ADS  Google Scholar 

  11. C.-C. Kao, G.-B. Yeh, S.-S. Lee, C.-K. Lee, C.-S. Yang, and K.-C. Wu, Appl. Opt., 41, No. 1, 46–54 (2002), https://doi.org/10.1364/AO.41.000046.

    Article  ADS  Google Scholar 

  12. Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, Exp. Mech., 45, 65–70 (2005), https://doi.org/10.1007/BF02428991.

    Article  Google Scholar 

  13. V. I. Guzhov, E. N. Denezhkin, S. P. Ilyinykh, G. A. Pozdnyakov, and D. S. Khaidukov, Determination of the Deformation Fields of Diffuse Objects by Digital Holographic Interferometry with a Stepwise Phase Shift, Avtometriya, No. 6, 61–67 (2020), https://doi.org/10.15372/AUT20200607.

  14. V. I. Guzhov, E. N. Denezhkin, S. P. Ilinykh, G. A. Pozdnyakov, and D. S. Khaidukov, Optoelectron. Instrum. Data Proc., 56, No. 6, 608–613 (2020), https://doi.org/10.3103/S8756699020060084.

    Article  ADS  Google Scholar 

  15. P. K. Rastogi, Digital Speckle Pattern Interferometry & Related Techniques, John Wiley & Sons, New York (2000).

    Google Scholar 

  16. A. A. Antonov, Investigation of Residual Stress Fields in Welded Structures, Svarochn. Proizvod., No. 12, 13–17 (2013).

  17. A. Antonov, Welding International, 28, No. 12, 966–969 (2014), https://doi.org/10.1080/09507116.2014.884327.

    Article  Google Scholar 

  18. E. V. Aniskovich, V. V. Moskvichev, N. A. Makhutov, I. A. Razumovsky, I. N. Odintsev, A. A. Apal'kov, and T. P. Plugatar', Estimation of Residual Stresses in Impeller Blades of Hydraulic Units, Gidrotekhn. Stroit., No. 11, 48–54 (2018).

  19. S. Nakadate, Appl. Opt., 25, No. 22, 4162–4167 (1986), https://doi.org/10.1364/AO.25.004162.

    Article  ADS  Google Scholar 

  20. V. I. Guzhov and S. P. Ilinykh, Optical Measurements. Computer Interferometry, Yurayt, Moscow (2019).

  21. L. Bruno, A. Poggialini, and G. Felice, Opt. Lasers Eng., 45, No. 12, 1148–1156 (2007), https://doi.org/10.1016/j.optlaseng.2007.06.004.

    Article  Google Scholar 

  22. C. C. Jaing, Y. L. Shie, C. J. Tang, Y. Y. Liou, C.-M. Chang, and C.-R. Yang, Opt. Rev., 16, 170–172 (2009), https://doi.org/10.1007/s10043-009-0029-0.

    Article  Google Scholar 

  23. S. Ravindran, R. Langoju, A. Patil, and P. Rastogi, Opt. Lasers Eng., 45, No. 7, 766–772 (2007), https://doi.org/10.1016/j.optlaseng.2007.01.001.

    Article  Google Scholar 

  24. Y. Takahashi, Appl. Mech. Mater., 888, 11–16 (2019), https://doi.org/10.4028/www.scientific.net/AMM.888.11.

    Article  Google Scholar 

  25. N. Kröger, J. Schlobohm, A. Pösch, and E. Reithmeier, Appl. Opt., 56, No. 25, 7299–7304 (2017), https://doi.org/10.1364/AO.56.007299.

    Article  ADS  Google Scholar 

  26. I. Shevkunov and N. V. Petrov, J. Imaging, 8, No. 4, 87 (2022), https://doi.org/10.3390/jimaging8040087.

    Article  Google Scholar 

  27. A. A. Apal'kov and T. P. Plugatar', Power Tech. Eng., 53, No 1, 33–38 (2019), https://doi.org/10.1007/s10749-019-01030-y.

    Article  Google Scholar 

  28. S. Nakadate, Appl. Opt., 25, No. 22, 4162–4167 (1986), https://doi.org/10.1364/AO.25.004162.

    Article  ADS  Google Scholar 

  29. V. I. Guzhov and S. P. Ilinykh, Optical Measurements. Computer Interferometry, Yurayt, Moscow (2019).

  30. L. Bruno, A. Poggialini, and G. Felice, Opt. Lasers Eng., 45, No. 12, 1148–1156 (2007), https://doi.org/10.1016/j.optlaseng.2007.06.004.

    Article  Google Scholar 

  31. C. C. Jaing, Y. L. Shie, C. J. Tang, Y. Y. Liou, C.-M. Chang, and C.-R. Yang, Opt. Rev., 16, 170–172 (2009), https://doi.org/10.1007/s10043-009-0029-0.

    Article  Google Scholar 

  32. S. Ravindran, R. Langoju, A. Patil, and P. Rastogi, Opt. Lasers Eng., 45, No. 7, 766–772 (2007), https://doi.org/10.1016/j.optlaseng.2007.01.001.

    Article  Google Scholar 

  33. Y. Takahashi, Appl. Mech. Mater., 888, 11–16 (2019), https://doi.org/10.4028/www.scientific.net/AMM.888.11.

    Article  Google Scholar 

  34. N. Kröger, J. Schlobohm, A. Pösch, and E. Reithmeier, Appl. Opt., 56, No. 25, 7299–7304 (2017), https://doi.org/10.1364/AO.56.007299.

    Article  ADS  Google Scholar 

  35. I. Shevkunov and N. V. Petrov, J. Imaging, 8, No. 4, 87 (2022), https://doi.org/10.3390/jimaging8040087.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Odintsev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 3, pp. 21–27, March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odintsev, I.N. Differential Method for the Formation of Relative Phase Shifts between Light Beams in a Two-Arm Interferometer. Meas Tech 66, 160–167 (2023). https://doi.org/10.1007/s11018-023-02205-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-023-02205-w

Keywords

Navigation