Skip to main content
Log in

Bridge Method for Studying the Spectra of Current Fluctuations in Tungsten Filaments in the Frequency Range 1.5·10–5–5·10–1 Hz

  • THERMOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

This article discusses the absence of methods for measuring low-frequency (LF) fluctuation processes at high temperatures and proposes an original bridge method for measuring the spectra of LF current fluctuations in the tungsten filaments of electric lamps in the controlled temperature range 300–2700 K. The application of the bridge measurement circuit reduces the influence of degradation processes in the filament and the power source’s own noise on the measurement results by several orders of magnitude. A spectral analysis of LF current fluctuations is performed in the frequency range 1.5·10–5–5·10–1 Hz using an automated unit based on a personal computer under the control of specially developed software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. A. Van der Zil, Measurement Noise [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  2. Yu. A. Zakharov, S. S. Gots, and R. Z. Bakhtizin, “Study of the spectrum of low-frequency current fluctuations in the filaments of electric lamps,” Izv. Vyssh. Ucheb. Zaved. Radiofizika, 63, No. 3, 250–265 (2020).

    Google Scholar 

  3. A. V. Stepanov, “Direct measurement of nonequilibrium noise,” Proc. 42nd Int. Sci. Method. Seminar Fluctuation and Degradation Processes in Semiconductor Devices, Moscow, Nov. 28–30, 2011, Popov MNTORES, MEI, Moscow (2012), pp. 49–55.

  4. S. S. Gots, Fundamentals of Description and Computer Calculations of Characteristics of Random Processes in Statistical Radiophysics, RIO BashGU, Ufa (2005).

    Google Scholar 

  5. M. I. Gorlov, D. Yu. Smirnov, and E. A. Zolotareva, “Methods for separating semiconductor devices in terms of reliability with use of low-frequency noise and x-ray irradiation,” Mikroelectronika, 40, No. 1, 52–56 (2011).

    Google Scholar 

  6. Yu. A. Zakharov, S. S. Gots, and R. Z. Bakhtizin, “Metrological aspects of measuring the average volume temperature of filaments in illumination lamp,” Izmer. Tekhn., No. 4, 51–56 (2019), https://doi.org/10.32446/0368-1025it.2019-4-51-56.

  7. B. Neri, C. Ciofi, and V. Dattilo, IEEE Trans. Electr. Dev., 44, No. 9, 1454–1459 (1997), https://doi.org/10.1109/16.622601.

    Article  ADS  Google Scholar 

  8. G. P. Zhizalsky, “Nonequilibrium 1/ƒγ-noise in conducting films and contacts,” Usp. Fiz. Nauk, 173, No. 5, 465–490 (2003), https://doi.org/10.3367/UFNr.0173.200305a.0465.

    Article  Google Scholar 

  9. R. Z. Bakhtizin and S. S. Gots, “Unit for the study of low-frequency noise of field-emission cathodes,” Prib. Tekhn. Eksperim., No. 3, 136–138 (1981).

  10. S. Wittrock, S. Tsunegi, K. Yakushiji, et al., Phys. Rev. B, 99, No. 23, 235135 (2019), https://doi.org/10.1103/PhysRevB.99.235135.

    Article  ADS  Google Scholar 

  11. F. G. Aliev, J. P. Cascales, A. Hallal, et al., Phys. Rev. Lett., 112, No. 21, 216801 (2014), https://doi.org/10.1103/PhysRevLett.112.216801.

    Article  ADS  Google Scholar 

  12. C. Chiteme, D. S. McLachlan, and I. Balberg, Phys. Rev. B, 67, No. 2, 024207 (2003), https://doi.org/10.1103/PhysRevB.67.024207.

    Article  ADS  Google Scholar 

  13. R. Guerrero, A. Solignac, M. Pannetier-Lecoeur, et al., Phys. Rev. B, 82, No. 3, 035102 (2010), https://doi.org/10.1103/PhysRevB.82.035102.

    Article  ADS  Google Scholar 

  14. S. I. Baskakov, Radio Engineering Circuits and Signals, Vysshaya Shkola, Moscow (2000).

    Google Scholar 

  15. S. S. Gots and R. Z. Bakhtizin, Appl. Surf. Sci., 215, No. 1–4, 105–112 (2003), https://doi.org/10.1016/S0169-4332(03)00314-3.

    Article  ADS  Google Scholar 

  16. S. F. Timashev, Yu. S. Polyakov, S. G. Lakeev, et al., “Principles of fluctuation metrology,” Zh. Fiz. Khimii, 84, No. 10, 1980–2000 (2010).

    Google Scholar 

  17. C. Perigois, C. Belczynski, T. Bulik, and T. Regimbau, Phys. Rev. D, 103, No. 4, 043002 (2021), https://doi.org/10.1103/PhysRevD.103.043002.

    Article  ADS  Google Scholar 

  18. A. G. Polnarev, I. W. Roxburgh, and D. Baskaran, Phys. Rev. D, 79, No. 8, 082001 (2009), https://doi.org/10.1103/PhysRevD.79.082001.

    Article  ADS  Google Scholar 

  19. J. A. Edlund, M. Tinto, A. Krolak, and G. Nelemans, Phys. Rev. D, 71, No. 12, 122003 (2005), https://doi.org/10.1103/PhysRevD.71.122003.

    Article  ADS  Google Scholar 

Download references

This work was financially supported by the Russian Foundation for Basic Research within the state assignment for 2021–2024, topic No. FZWU-2021-0009, “Complex studies of physical and chemical processes of the formation of functional nanostructures in condensed media under combined external influences.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakharov.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 18–25, May, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, Y.A., Gots, S.S. & Bakhtizin, R.Z. Bridge Method for Studying the Spectra of Current Fluctuations in Tungsten Filaments in the Frequency Range 1.5·10–5–5·10–1 Hz. Meas Tech 64, 364–372 (2021). https://doi.org/10.1007/s11018-021-01942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-021-01942-0

Keywords

Navigation