Skip to main content
Log in

Analysis of the Dependence of the Magnetic Properties of Granular Ferromagnetic Samples on the Ratio of their Length to Diameter

  • ELECTROMAGNETIC MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

The problems of experimental determination of the magnetic parameters of inhomogeneous granular magnets are considered. It is noted that the lack of direct and (or) indirect experimental data on the magnetic properties of granular ferromagnetic samples of various relative lengths, in particular, negatively affects the validity of requirements and decisions for the creation and maintenance of the functional elements and working bodies of various devices and devices. For cylindrical polyspherical samples, the relative length of which is in the range 1–16, within the framework of the macromodel of an effective medium, the dependences of induction, permeability, susceptibility, and magnetization on the strength of the magnetizing field are obtained. It is shown that in the field strength range of 9–47 kA/m, the values of induction and magnetization of the samples under study increase, which indicates the absence of magnetic saturation of granular magnets (in contrast to solid magnets). In this case, the values of the magnetic permeability and susceptibility remain practically stable. The results obtained will be useful in creating the working bodies of various apparatus and instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. R. Bjork and Z. Zhou, J. Magnet. Magn. Mater., 476, 417–422 (2019), DOI: https://doi.org/10.1016/j.jmmm.2019.01.005.

    Article  ADS  Google Scholar 

  2. G. Diguet, E. Beaugnon, and J. Y. Cavaillé, J. Magnet. Magn. Mater., 322, 3337–3341 (2010), DOI: https://doi.org/10.1016/j.jmmm.2010.06.020.

    Article  ADS  Google Scholar 

  3. N. A. Ilyin, A. A. Klimov, N. Tiercelin, et al., “Dynamics of magnetization in multilayer TbCo/FeCo structures under the action of femtosecond optical excitation,” Ross. Tekhnol. Zh., 7, No. 3, 50–58 (2019), DOI: https://doi.org/10.32362/2500-316X-2019-7-3-50-58.

    Article  Google Scholar 

  4. A. Eskandarpour, K. Iwai, and S. Asai, IEEE Trans. Appl. Supercond., 19 (2), No. 4799183, 84–95 (2008), DOI: https://doi.org/10.1109/TASC.2009.2014567.

    Article  ADS  Google Scholar 

  5. F. Mishima, T. Terada, Y. Akiyama, et al., IEEE Trans. Appl. Supercond., 18 (2), No. 4520245, 824–827 (2008), DOI: 10.1109/TASC.2008.920830.

  6. A. A. Sandulyak, V. A. Ershova, and A. V. Sandulyak, “Metal and power consumption of a model range of magnetic solenoid filters,” Tyazh. Mashinostr., No. 4, 17–22 (2007).

  7. A. A. Sandulyak, D. I. Svistunov, M. N. Polismakova, et al., “‘Extrapolable chain’ of magnetic test-filters as a means of controlling ferro-impurities,” Zakonodat. Prikl. Metrolog., No. 3, 35–40 (2010).

  8. J. L. Mattei, O. Minot, and M. Le Floc’h, J. Magnet. Magn. Mater., 140–144, No. 3, 2189–2190 (1995), DOI: https://doi.org/10.1016/0304-8853(94)00624-5.

  9. A. A. Sandulyak, A. V. Sandulyak , V. A. Ershova, et al., J. Magnet. Magn. Mater., 441, 724–734 (2017), DOI: https://doi.org/10.1016/j.jmmm.2017.06.027.

    Article  ADS  Google Scholar 

  10. A. A. Sandulyak, V. A. Ershova, D. A Sandulyak., et al., J. Eng. Phys. Thermophys., 90, No. 2, 329–335 (2017), DOI: https://doi.org/10.1007/s10891-017-1571-4.

    Article  Google Scholar 

  11. D. A. Sandulyak, A. A Sandulyak, D. O. Kiselev, et al., “Determination of the magnetic susceptibility of ferroparticles from the data of the susceptibility of their dispersed samples,” Izmer. Tekhn., No. 9, 48–52 (2017), DOI: https://doi.org/10.32446/0368-1025it.2017-9-48-52.

  12. M. Anhalt, J. Eng. Phys. Thermophys., 320, e366–e369 (2008), DOI: https://doi.org/10.1016/j.jmmm.2008.02.072.

    Article  Google Scholar 

  13. M. M. Yashin and Kh. B. Mirzokulov, “Symmetrized Maxwell – Garnett approximation as an effective method for studying nanocomposites,” Ross. Tekhnol. Zh., 7, No. 4, 92–100 (2019), DOI: https://doi.org/10.32362/2500-316X-2019-7-4-92-100.

    Article  Google Scholar 

  14. D. X. Chen, E. Pardo,Y.-H. Zhu, et al., J. Magnet. Magn. Mater., 449, 447–454 (2018), DOI: https://doi.org/10.1016/j.jmmm.2017.10.069.

    Article  ADS  Google Scholar 

  15. I. Yaglidere and E. O. Gunes, IEEE Trans. Magn., 54, No. 2, 400–411 (2018), DOI: https://doi.org/10.1109/TMAG.2017.2765624.

    Article  Google Scholar 

  16. S. H. Im and G. S. Park, Proc. 21st Int. Conf. on Electrical Machines and Systems (ICEMS), Jeju, South Korea, Oct. 7–10, 2018 (2018), pp. 2629–2632, DOI:https://doi.org/10.23919/ICEMS.2018.8548969.

  17. M. Wang, J. Feng, Y. Shi, and M. Shen M., IEEE Trans. Industr. Electron., 66, No. 3, 1842–1851 (2019), DOI: https://doi.org/10.1109/TIE.2018.2840485.

  18. A. Caciagli, R. J. Baars, A. P. Philipse, and B. W. M. Kuipers, J. Magnet. Magn. Mater., 456, 423–432 (2018), DOI: https://doi.org/10.1016/j.jmmm.2018.02.003.

    Article  ADS  Google Scholar 

  19. O. M. Marinica, J. Nanomater. (2017), DOI: https://doi.org/10.1155/2017/5407679.

  20. E. A. Périgo, B. Weidenfeller, P. Kollár, and J. Füzer, Appl. Phys. Rev., 5, 031301 (2018), DOI: https://doi.org/10.1063/1.5027045.

    Article  ADS  Google Scholar 

  21. A. V. Sandulyak, D. A. Sandulyak, V. A. Ershova, et al., “Magnetic characteristics of a “short” porous magnet: an example of re-filling balls,” Fund. Prikl. Probl. Tekhn. Tekhnol., No. 3 (335),121–133 (2019).

Download references

The research was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment in the field of science (project No. 0706-2020-0024), the Russian Foundation for Basic Research and the Royal Society of London within the framework of the scientific project No. 20-52-10006, and a grant of the President of the Russian Federation for state support of young scientists (project MK-807.2020.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sandulyak.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 6, pp. 46–51, June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandulyak, A.V., Tkachenko, R.Y., Sandulyak, D.A. et al. Analysis of the Dependence of the Magnetic Properties of Granular Ferromagnetic Samples on the Ratio of their Length to Diameter. Meas Tech 63, 469–475 (2020). https://doi.org/10.1007/s11018-020-01811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01811-2

Keywords

Navigation