Skip to main content
Log in

Reference Materials of Composition of Biologically Active Substances

  • MEDICAL AND BIOLOGICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

To ensure the uniformity of measurements and metrological traceability of measurement results in state regulation of ensuring the uniformity of measurements, including in healthcare and pharmaceuticals, reference materials of composition, properties and structure of substances are needed. Currently, the Federal Information Fund of the Russian Federation has approximately 9000 reference materials, among which only about 30 reference materials are intended for use in pharmaceuticals and medicine. This amount is clearly insufficient for full metrological support of these areas. This article describes the main stages and results of research and development of reference materials of starting pharmaceutical substances amphotericin B, natamycin, olivomycin A. The main substances of the created reference materials are identified. Mass fractions of related compounds, residual organic solvents and inorganic impurities (iron cations and heavy metals) were determined. The results of the work were used to confirm the reference material types of the starting pharmaceutical substances amphotericin B, natamycin, olivomycin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. VIM 3. International Vocabulary of Metrology. Basic and General Concepts and Associated Terms, 3rd ed. [Russian translation], Mendeleev VNIIM, BelGIM, NPO Professional, St. Petersburg (2010), https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf, acc. Jan. 10, 2020.

  2. Yashpal S. Chhonker, Yarra Durga Prasad, Hardik Chandasana, et al., Int. J. Biol. Macromol., 72, 1451–1458 (2015), DOI: https://doi.org/10.1016/j.ijbiomac.2014.10.014.

    Article  Google Scholar 

  3. Lyes Mehenni, Malika Lahiani-Skiba, Guy Ladam, et al., Pharmaceutics, 10, No. 4, 235 (2018), DOI: https://doi.org/10.3390/pharmaceutics10040235.

    Article  Google Scholar 

  4. A. N. Tevyashova, “Olivomycin A – antitumor antibiotic of the aureol acid group,” Khim.-Farm. Zh., 50, No. 7, 3–5 (2016), DOI: https://doi.org/10.30906/0023-1134-2016-50-7-3-8.

    Article  Google Scholar 

  5. Houssam M. Atta, Sh. M. Selim, and Mona S. Zayed, J. Amer. Sci., 8 (2), 469–475 (2012), www.americanscience.org, acc. Jan. 10, 2020.

    Google Scholar 

  6. P. Sowinski, J. Pawlak, and E. Borowski, Magn. Reson. Chem., 30, 275–279 (1992), DOI: https://doi.org/10.1002/mrc.1260300402.

    Article  Google Scholar 

  7. J. M. Brown and P. J. Sidebottom, Tetrahedron, 37, 1421–1428 (1981).

    Article  Google Scholar 

  8. L. Volpon and J.-M. Lancelin, Eur. J. Biochem., 269, 4533–4541 (2002), DOI: https://doi.org/10.1046/j.1432-1033.2002.03147.x.

    Article  Google Scholar 

  9. Y. Yoshimura, M. Koenuma, K. Matsumoto, et al., J. Antibiot. (Tokyo), 41, 53–67 (1988), DOI: https://doi.org/10.7164/antibiotics.41.53.

    Article  Google Scholar 

  10. P. Grundt, T. Findeisen, E. Miethke, et al., J. Clin. Microbiol., 50 (5), 1727–9 (2012), DOI: https://doi.org/10.1128/JCM.00047-12.

    Article  Google Scholar 

  11. Vishal Diwan, Ashok J. Tamhankar, Rakesh K. Khandal, et al., BMC Public Health, 10 (1), 414 (2010), DOI: https://doi.org/10.1186/1471-2458-10-414.

    Article  Google Scholar 

  12. Prakash Srinivasan, Ajit K. Sarmah, Merilyn Manley-Harris, and Alistair L. Wilkins, J. Environ. Sci. Heal. A, 47 (13), 2120–2132 (2012), DOI: https://doi.org/10.1080/10934529.2012.696005.

    Article  Google Scholar 

  13. Z. Tzouganaki and M. Koupparis, Mediter. J. Chem., 6 (4), 133–141 (2017), DOI: https://doi.org/10.13171/mjc64/01706211420-tzouganaki.

    Article  Google Scholar 

  14. P. N. Patil and Sh. Jacob, Int. J. Pharm. Sci. Res., 3 (1) (2012), DOI: https://doi.org/10.15373/22501991/APR2014/98.

  15. Yuexi Yang, Chen Huan, Xianrui Liang, et al., Molecules, 24 (21), 3962, (2019) DOI: https://doi.org/10.3390/molecules24213962.

    Article  Google Scholar 

  16. Rajamani Lakshminarayanan, Radhakrishnan Sridhar, Xian Jun Loh, et al., Int. J. Nanomed., 9 (1), 439–458, (2014), DOI: https://doi.org/10.2147/IJN.S58487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kuliabina.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 4, pp. 66–71, March, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuliabina, E.V., Tevyashova, A.N., Solov’eva, S.E. et al. Reference Materials of Composition of Biologically Active Substances. Meas Tech 63, 325–331 (2020). https://doi.org/10.1007/s11018-020-01790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01790-4

Keywords

Navigation