Skip to main content
Log in

Dependence of Entropy Production Density on the Rate of Temperature Change in Linear Thermodynamics

  • THERMOPHYSICAL MEASUREMENTS
  • Published:
Measurement Techniques Aims and scope

Experimental thermograms obtained on samples of different shapes and sizes under spontaneous cooling, pulsed resistive heating, or laser surface heating of the solid phase of high-temperature metals are analyzed. It is shown that all the thermograms can be ascribed to a linear thermodynamic regime. A linear dependence of the entropy production density on the rate of variation of the temperature is found on analyzing the thermograms. This means that the rate of variation in the temperature can be regarded as an additional variable for the entropy production density in the linear regime and can be used for representing properties measured in a nonstationary thermal regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. W. J. Parker, R. J. Jenkius, C. H. Butler, and G. L Abbott, “Flash method of determining thermal diffusivity, heat capacity and thermal conductivity,” J. Appl. Phys., 32, No. 9, 1679–1784 (1961).

    Article  ADS  Google Scholar 

  2. A. Cezairliyan and J. L. McClure, “A Microsecond-resolution transient technique for measuring the heat of fusion of metals: niobium,” Int. J. Thermophys., 8, No. 5, 577–589 (1987).

    Article  ADS  Google Scholar 

  3. G. M. Kondrat’ev, Regular Thermal Regime, Gostekhizdat, Moscow (1954).

    Google Scholar 

  4. Y. S. Touloukian (ed.), Thermophysical Properties of High Temperature Solid Materials, Macmillan Company, NY, Collier-Macmillan Ltd., London (1967).

  5. V. S. Chirkin, Thermal Properties of Nuclear Technology Materials, Atomizdat, Moscow (1968).

    Google Scholar 

  6. A. V. Lykov, Theory of Thermal Conductivity, Vysshaya Shkola, Moscow (1967).

    Google Scholar 

  7. L. P. Filippov, Measurement of the Thermal Properties of Solid and Liquid Metals at High Temperatures, Izd. MGU, Moscow (1967).

    Google Scholar 

  8. I. Prigozhin and D. Condepudi, Modern Thermodynamics from Heat Motors to Dissipative Structures [Russian translation], Mir, Moscow (2002).

    Google Scholar 

  9. S. I. Serdyukov, “Higher order equations of heat and mass transfer and their justification in extended nonequilibrium thermodynamics,” Teor. Osn. Khim. Tekhnol., 47, No. 2, 122–138 (2013).

    Google Scholar 

  10. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York (1984).

    MATH  Google Scholar 

  11. J. Fort and J. E. Llebot, “Radiative transfer in the framework of extended irreversible thermodynamics,” J. Phys. A: Math. Gen., 29, 3427–3436 (1996).

  12. I. Müller and T. Ruggeri, Extended Thermodynamics, Springer, Berlin (1992).

    MATH  Google Scholar 

  13. A. V. Kostanovskiy and M. E. Kostanovskaya, “Nonequilibrium thermodynamic conditions and properties of materials,” Izmer. Tekhn., No. 11, 41–46 (2008).

  14. A. E. Sheindlin (ed.), Radiative Properties of Solid Materials: Handbook, Energiya, Moscow (1974).

    Google Scholar 

  15. A. V. Kostanovskiy and M. E. Kostanovskaya, “Determining the limits of applicability of the parabolic heat transfer equation,” Izmer. Tekhn., No. 6, 38–42 (2008).

  16. V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer, Energiya, Moscow (1975).

    Google Scholar 

  17. A. V. Kostanovskiy and M. E. Kostanovskaya, “The role of heat flux in the nonsteady thermal problem of molybdenum sphere cooling in an electrostatic levitation experiment,” High Temp., 55, No. 6, 866–869 (2017).

    Article  Google Scholar 

  18. A. V. Kostanovskiy and M. E. Kostanovskaya, “Thermodynamic application of the electrostatic levitation method,” Izmer. Tekhn., No. 9, 34–37 (2012).

  19. E. I. Asinovskii and A. V. Kirillin, Nontraditional Methods for Studying the Thermodynamic Properties of Substances at High Temperatures, Yanus-K, Moscow (1997).

    Google Scholar 

  20. P.-F. Paradis and W. K. Rhim, “Non-contact measurements of thermophysical properties of titanium at high temperature,” J. Chem. Thermodyn., 32, No. 1, 123–133 (2000).

    Article  Google Scholar 

  21. E. Kaschnitz and P. Reiter, “Enthalpy and temperature of the titanium alpha-beta phase transformation,” Int. J. Thermophys., 23, No. 4, 1339–1345 (2002).

    Article  Google Scholar 

  22. P.-F. Paradis, T. Ishikawa, and N. Koike, “Thermophysical property measurements of liquid and supercooled cobalt,” HTHP, 37, 5–11 (2008).

    Google Scholar 

  23. E. Kaschnitz and A. Cezairliyan, “Radiance temperatures at 1500 nm of niobium and molybdenum at their melting points by a pulse-heating technique,” Int. J. Thermophys., 17, No. 5, 1069–1078 (1996).

    Article  ADS  Google Scholar 

  24. A. Cezairliyan and J. L. McClure, “A microsecond-resolution transient technique for measuring the heat of fusion of metals: niobium,” Int. J. Thermophys., 8, No. 5, 577 (1987).

    Article  ADS  Google Scholar 

  25. P.-F. Paradis, T. Ishikawa, and S. Yoda, “Noncontact measurements of thermophysical properties of molybdenum at high temperatures,” Int. J. Thermophys., 23, No. 2, 555–568 (2002).

    Article  Google Scholar 

  26. P.-F. Paradis, T. Ishikawa, R. Fujii, and S. Yoda, “Thermophysical properties of molten tungsten measured with an electrostatic levitator,” Heat Transfer, 35, No. 2, 152–164 (2006).

    Google Scholar 

  27. M. A. Sheindlin and V. N. Senchenko, “Apparatus for comprehensive study of the thermodynamic properties of substances using pulsed heating by high density currents,” Teplofiz. Vys. Temp., 25, No. 2, 369–375 (1987).

    Google Scholar 

  28. L. S. Dubrovinsky and S. K. Saxena, “A thermal characteristic of melting in laser heating at high pressure,” HTHP, 31, 385–391 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kostanovskiy.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 1, pp. 52–57, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostanovskiy, A.V., Kostanovskaya, M.E. Dependence of Entropy Production Density on the Rate of Temperature Change in Linear Thermodynamics. Meas Tech 62, 64–70 (2019). https://doi.org/10.1007/s11018-019-01587-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-019-01587-0

Keywords

Navigation