Skip to main content
Log in

Directions of Development of the Standards Base of Gravimetry

  • FUNDAMENTAL PROBLEMS IN METROLOGY
  • Published:
Measurement Techniques Aims and scope

Modern advances in the area related to the creation of gravimetry instruments are analyzed. Trends in the development and creation of standards of the unit of gravity acceleration, units of vertical and horizontal gravitational gradients, and unit of the plumb line deviation as well as the unit of gravitational potential are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, “Testing general relativity with atom interferometry,” Phys. Rev. Lett., 98, 111102 (2007), https://arXiv:gre-qc/0610047, acc. 12.07.2017.

  2. Hubiao Wang, Lin Wu, Hua Chai, et al., “Technology of gravity aided inertial navigation system and its trial in South China Sea,” IET Radar Sonar Navig., 10, Iss. 5, 862–869 (2016), doi: https://doi.org/10.1049/iet-rsn.2014.0419.

    Article  Google Scholar 

  3. T. C. Walker, M. Pachter, and R. E. Huffman, Jr., “Gravity gradiometer integrated inertial navigation,” Europ. Control Conf. (ECC), Zürich (2013).

  4. L. F. Vitushkin and O. A. Orlov, “VNIIM-1 absolute ballistic gravimeter developed by Mendeleev VNIIM,” Girosk. Navig., No. 2, 95–101 (2014).

  5. G. O. Arnautov, E. N. Kalish, M. G. Smirnov, et al., Inventor’s Certificate SU 1563432 USSR, G 01 V 7/14, “Ballistic gravimeter,” Izobreteniya, No. 6 (2007).

  6. P. F. Vitushkin, “Absolute ballistic gravimeters,” Girosk. Navig., No. 3 (90), 3–12 (2015).

  7. Ch. J. Bordé, “Atomic clocks and inertial sensors,” Metrologia, 39, No. 35, 435–463 (2002).

    Article  ADS  Google Scholar 

  8. S. Merlet, J. Le Gouet, Q. Bodart, et al., “Operating an atom interferometer beyond its linear range,” Metrologia, 46, No. 1, 87–94 (2009).

    Article  ADS  Google Scholar 

  9. Z. Jiang, V. Palinkas, F. E. Arias, and J. Liard, “The 8th International Comparison of Absolute Gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry,” Metrologia, 49, No. 6, 666–684 (2012).

    Article  ADS  Google Scholar 

  10. R. J. Warburton, H. Pillai, and R. C. Reinman, “Initial results with the new GWR iGravTM superconducting gravity meter,” Proc. Symp. of International Association of Geodesy (IAG) on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM2010) (2010).

  11. V. G. Peshekhonov, O. A. Stepanov (eds.), L. I. Avgustov, et al., Modern Methods and Means of Measuring the Parameters of the Earth’s Gravitational Field, Concern TsNII Elektropribor, St. Petersburg (2010).

  12. K. Kalicioglu, R. Deniz, and H. Ozener, “Determining astrogeodetic deviations of the vertical using digital zenith camera system,” in: 26th IUGG General Assembly, Prague (2015).

  13. A. Somieski, Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece: Dissert. Subm. to ETH Zurich for the Degree of Doctor of Sciences (2008).

    Google Scholar 

  14. S. V. Gayvoronskii, N. V. Kuz’mina, and V. V. Tsodokova, “Computed-aided zenith telescope for the solution of astro-geodetic problems,” in: Navigation in the Earth’s Gravitational Field and its Metrological Assurance: Abstracts (2017), pp. 75–77.

  15. M. M. Murzabekov and V. F. Fateev, “A complex of instruments of metrological assurance for astronomical meters of the inhomogeneity of the Earth’s gravitational field,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 210–214.

  16. L. D. Landau and Ye. M. Lifshits, Field Theory, Nauka, Moscow (1967).

  17. V. F. Fateev, Relativistic Metrology of Near-Earth Space-Time: Monograph, VNIIFTRI, Mendeleevo (2017).

    Google Scholar 

  18. V. F. Fateev, A. I. Zharikov, V. P. Sysoev, et al., “On measurement of the difference between the Earth’s gravitational potentials by means of transportable quantum clocks,” Dokl. Akad. Nauk, 472, No. 2, (2017), doi: https://doi.org/10.7868/S0869565217020189.

  19. V. F. Fateev, V. P. Sysoev, and E. A. Rybakov, “Experimental measurement of the gravitational effect of time slowdown by means of transportable quantum clocks,” Izmer. Tekhn., No. 4, 41–43 (2016).

  20. S. S. Donchenko, O. V. Kolmogorov, D. V. Prokhorov, “Results of experimental studies of a system of one- and twosided comparisons of time scales,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 228–230.

  21. S. Droste, F. Ozimek, T. Udern, et al., “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett., 111, 110801, DOI: https://doi.org/10.1103/PhysRevLett.111.110801.

  22. V. F. Fateev, E. A. Rybakov, and F. R. Smirnov, “The method of relativistic synchronization of transportable atomic clocks and its experimental verification,” Pisma Zh. Tekh. Fiz., 43, Iss. 10, 3–11 (2017).

  23. O. I. Berdasov, K. Yu. Khabarova, S. A. Strelkin, et al., “Optical frequency standards on cold strontium atoms,” Alman. Sovr. Metrol., No. 1, 13–36 (2014).

  24. S. V. Chepurov, A. A. Lugovoi, S. N. Kuznetsov, et al., “Optical frequency standard based on a single ytterbium atom,” in: Metrology of Time and Space: Proc. 8th Int. Symp., VNIIFTRI, Mendeleevo (2016), pp. 241–242.

  25. N. Poli, M. Schioppo, S. Vogt, et al., “A transportable strontium optical lattice clock,” Appl. Phys. B , No. 117, 1107–1116 (2014), DOI https://doi.org/10.1007/s00340-014-5932-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Fateev.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 5, pp. 5–9, May, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fateev, V.F., Shchipunov, A.N. Directions of Development of the Standards Base of Gravimetry. Meas Tech 61, 421–426 (2018). https://doi.org/10.1007/s11018-018-1446-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-018-1446-x

Keywords

Navigation