Skip to main content
Log in

Determination of the Avogadro Constant Using Crystals of Graphene and Graphite

  • Fundamental Problems in Metrology
  • Published:
Measurement Techniques Aims and scope

A method for determining the Avogadro constant using samples of polygraphene made up of multiple layers of graphene is studied. The properties, and methods of producing, monitoring the crystal lattice quality, and determining the geometric parameters of the new materials, graphene and polygraphene, are examined. The method proposed by Fraundorf for creating fractional units of mass and amounts of the material with the aid of a polygraphene hexahedron is modified. The precision of the polygraphene prism technique is found to be low and a method for determining the Avogadro constant using a sample of highly oriented pyrolitic graphite with a high degree of chemical and isotopic purity offers more promise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I. M. Mills et al., “Redefinition of the kilogram: a decision whose time has come,” Metrologia, 42, 1–80 (2005).

    Article  Google Scholar 

  2. I. M. Mills et al., “Redefinition of the kilogram, ampere, kelvin, and mole: a proposed approach to implementing the CIPM Recommendation 1 (CI-2005),” Metrologia, 43, 227–246 (2006).

    Article  ADS  Google Scholar 

  3. S. A. Kononogov, Metrology and the Fundamental Constants of Physics, Standartinform, Moscow (2008).

    Google Scholar 

  4. Fifty Years on the Way to Quantum SI Units: Proc. Int. Symp., St. Petersburg (2010), http://physics.vniim.ru/SI50/, accessed Jan. 24, 2014.

  5. BIPM New SI: Discussion in the Scientific Literature, www.bipm.org/en/si/new_si/, accessed March 24, 2014.

  6. BIPM 2011, 24 CGPM Resolutions, www.bipm.org/utils/common/pdf/24_CGPM_Resolutions.pdf, accessed March 24, 2014.

  7. P. Fraundorf, “A multiple of 12 for Avogadro,” arXiv, 1201.5537.

  8. K. S. Novoselov et al., “Electric field effect in atomically thin carbon films,” Science, 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  9. J. C. Slonczewski and P. R. Weiss, “Band structure of graphite,” Phys. Rev., 109, 272–279 (1958).

    Article  ADS  Google Scholar 

  10. M. I. Katsnelson, “Graphene: carbon in two dimensions,” Mater. Today, 10, 20–27 (2007).

    Article  Google Scholar 

  11. R. E. Peierls, “Quelques properties typiques de corps solides,” Ann. Inst. Henri. Poincare, 5, 177–222 (1935).

    MathSciNet  MATH  Google Scholar 

  12. L. D. Landau, “Zur Theorie der Phasenumwandlungen II,” Phys. Z. Sowjetun., 11, 26–35 (1937).

    MATH  Google Scholar 

  13. N. D. Mermin and H. Wagner, “Absence of ferromagnetism and antiferromagnetism in one- or two-dimensional Heisenberg models,” Phys. Rev. Lett., 17, 1133–1136 (1966).

    Article  ADS  Google Scholar 

  14. N. D. Mermin, “Crystalline order in two dimensions,” Phys. Rev., 176, 250–254 (1968).

    Article  ADS  Google Scholar 

  15. A. V. Eletskii et al., “Graphene: methods of production and thermophysical properties,” Usp. Fiz. Nauk, 181, No. 3, 233–268 (2011).

    Article  Google Scholar 

  16. J. C. Meyer et al., “The structure of suspended graphene sheets,” Nature, 446, 60–63 (2007).

    Article  ADS  Google Scholar 

  17. A. Fasolino et al., “Intrinsic ripples in graphene,” Nature Mater., 6, 858–861 (2007).

    Article  ADS  Google Scholar 

  18. D. Nelson, T. Piran, and S. Weinberg (eds.), Statistical Mechanics of Membranes and Surfaces, World Scientific, River Edge, NJ (2004).

    MATH  Google Scholar 

  19. A. Iorio, “Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that,” arXiv, 1308.0265, 1–76 (2013).

  20. D. Jariwala, A. Srivastava, and P. M. Ajayan, “Graphene synthesis and band gap opening,” J. Nanosci. Nanotechnol., 11, 6621–6641 (2011).

    Article  Google Scholar 

  21. L. K. Isaev, S. A. Kononogov, and V. V. Khruschov, “On the redefinition of the four base SI units,” Izmer. Tekhn., No. 2, 3–8 (2013); Measur. Techn., 56, No. 2, 113–120 (2013).

    Article  Google Scholar 

  22. B. Andreas et al. (IAC), “Counting the atoms in a 28Si crystal for a new kilogram definition,” Metrologia, 48, S1–13 (2011).

    Article  ADS  Google Scholar 

  23. T. P. Hill and V. V. Khruschov, “Is there an objective need for an urgent redefinition of the kilogram and mole?” Izmer. Tekhn., No. 7, 14–17 (2013); Measur. Techn., 56, No. 7, 747–752 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khruschov.

Additional information

Translated from Izmeritel'naya Tekhnika, No. 6, pp. 3–8, June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khruschov, V.V. Determination of the Avogadro Constant Using Crystals of Graphene and Graphite. Meas Tech 57, 587–594 (2014). https://doi.org/10.1007/s11018-014-0502-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-014-0502-4

Keywords

Navigation