Skip to main content
Log in

Alloys Based on Orthorhombic Intermetallic Ti2AlNb: Phase Composition, Alloying, Structure, Properties

  • Published:
Metallurgist Aims and scope

The article analyses data for chemical composition, manufacturing and processing methods for promising heat-resistant alloys based upon orthorhombic titanium intermetallic Ti2AlNb (O-alloys) developed within Russia and abroad. Phase diagrams typical for alloys based upon Ti–Al–Nb and general data for the phases formed in these alloys are provided. Concepts of aluminum and niobium equivalents used for multicomponent alloys are considered. The effect of alloying elements on a combination of mechanical properties of O-alloys, alloying principles, and compositions of the alloys developed are summarized. Characteristics of phase transformations occurring within alloys during heat treatment, including continuous heating and isothermal treatment, are provided. Typical microstructures of the alloys are presented; processing methods for their production and the influence of structural parameters on a combination of properties are described. Methods for manufacturing and processing routes of O-alloys are presented, which provide a good set of properties at room and elevated temperatures, as well as possible operating temperatures for refractory use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. D. Banerjee, A. K. Gogia, T. K. Nandi, and V. A Joshi, “A new ordered orthorhombic phase in a Ti, Al–Nb alloy,” Acta Metall., 36. No. 4, 871–882 (1988).

    Article  CAS  Google Scholar 

  2. J. Kumpfert, “Intermetallic alloys based on orthorhombic titanium aluminide,” Advanced Engineering Materials, 3, No. 11, 851–864 (2001).

    Article  CAS  Google Scholar 

  3. N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Intermetallic Alloys Based on Titanium and Nickel [in Russian], 2nd ed., VIAM, Moscow (2019).

    Google Scholar 

  4. N. V. Kazantseva, Materials for High-Speed Transport Systems: Monograph [in Russian], UrGUPS, Ekaterinberg (2016).

  5. V. A. Duyunova N. A. Nochovnaya, E. B. Alekseev, and V. I. Ivanov, “Study of the effect of alloying and hot deformation on the properties of small stampings of alloys based upon TiAl intermetallic,” Metallurg, No. 8, 83–88 (2020).

  6. S. B. Maslenkov and E. A. Maslenkova, Steels and Alloys for High Temperatures: Ref in 2 vol. Book 1 [in Russian], Metallurgiya, Moscow (1991).

  7. W. Chen, J. W. Li, L. Xu, and B. Lu, “Development of Ti2AlNb alloys: opportunities and challenges,” Advanced Materials & Processes, No. 5, 23–27 (2014).

    Google Scholar 

  8. A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, and Properties, Reference [in Russian], VILS, Moscow (2009).

  9. D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, 122, 448–511 (2017)..

    Article  CAS  Google Scholar 

  10. J. W. Zhang, “Research and application of Ti3Al and Ti2AlNb based alloys,” The Chinese J. Nonferrous Metals, 20, 336–341 (2010).

    Google Scholar 

  11. Yu. B. Bykov, N. A. Nochovnaya, V. M. Timokhin, E. B. Alekseev, A. V. Novak, and E. S. Zahareva, “Use of intermetallic titanium ortho-alloy in the construction of high-pressure compressor control equipment,” Élektrometallurgiya, No. 11, 19–26 (2019).

    Google Scholar 

  12. H. Z. Niu, Y. F. Chen, D. L. Zhang, W. Zhang, and P. X. Zhang, “Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization,” Materials and Design, 89, 823–829 (2016).

    Article  CAS  Google Scholar 

  13. Y. H. Zhou, W. P. Li, D. W. Wang, L. Zhang, K. Ohara, J. Shen, T. Ebel, and M. Yan, “Selective laser melting enabled additive manufacturing of Ti22Al25Nb intermetallic: Excellent combination of strength and ductility, and unique microstructural features associated,” Acta Materialia, 173, 117–129 (2019).

    Article  CAS  Google Scholar 

  14. I. Polozov, V. Sufiiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin, and A. Popovich, “Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders,” Additive Manufacturing, 34, 101374 (2020).

    Article  CAS  Google Scholar 

  15. Zixiang Li, Yinan Cui, Li Wang, Haoyu Zhang, Zhiyue Liang, Changmeng Liu, and Dong Du, “An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method,” Additive Manufacturing, 59, 102552 (2022).

    Article  Google Scholar 

  16. C. J. Boehlert, B. S. Majumdar, V. Seetharaman, and D. B. Miracle, “Part I. The Microstructural evolution in Ti–Al–Nb O + Bcc orthorhombic alloys,” Metallurgical And Materials Transactions A, 30A, No. 9, 2305–2323 (1999).

    Article  CAS  Google Scholar 

  17. A. V. Novak, E. B. Alekseev, V. I. Ivanov, and D. A. Dzunovich, “Study of the effect of quenching parameters on structure and hardness of intermetallic titanium ortho-alloy VTI-4,” Trudy VIAM, No. 2, 38–46 (2018).

    Google Scholar 

  18. P. K. Sagar, D. Banerjee, K. Muraleedharan, and Y. V. R. K. Prasad , “High-temperature deformation processing of Ti–24Al–20Nb,” Metallurgical and Materials Transactions A, 27A, No. 9, 2593–2604 (1999).

    Article  Google Scholar 

  19. K. Muraleedharan, T. K. Nandy, D. Banerjee, and S. Lele, “Phase stability and ordering behavior of the O phase in Ti–Al–Nb alloys,” Intermetallics, 3, 187–199 (1995).

    Article  CAS  Google Scholar 

  20. A. G. Illarionov, S. V. Grib, and A. A. Popov, “Phase transformations in the quenched alloy based on orthorhombic titanium aluminide during heating,” Solid State Phenomena, 316, 473–478 (2021).

    Article  Google Scholar 

  21. B. Wu, M. Zinkevich, F. Aldinger, M. Chu, and J. Shen, “Prediction of the ordering behavior of the orthorhombic phase based on Ti2AlNb alloys by combining thermodynamic model with ab initio calculation,” Intermetallics, 16, 42–51 (2008).

    Article  CAS  Google Scholar 

  22. C. P. Chang and M. H. Loretto, “The decomposition process of rapidly solidified Ti–25 at.% A1–25 at.% Nb,” Philosophical Magazine A, 63, No. 3, 389–406 (1991).

    Article  CAS  Google Scholar 

  23. A. A. Popov, A. G. Illarionov, S. V. Grib, S. L. Demakov, M. S. Karabanalov, and O. A. Elkina, “Phase and structural transformations in the alloy on the basis of the orthorhombic titanium aluminide,” The Physics Metals and Metallography, 106, No. 4, 399–410 (2008).

    Article  Google Scholar 

  24. A. G. Illarionov, A. A., Popov, S. V. Grib, and O. A. Elkina, “Special features of formation of omega-phase in titanium alloys due to hardening,” Metal Science and Heat Treatment, 52, No. 9–10, 493–498 (2011).

  25. L. A. Bendersky and W. J. Boettinger, “Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part II: Experimental TEM study of microstructures,” J. Research National Institute of Standards and Technology, 98, No. 5. 585–606 (1993).

  26. D. Banerjee, “The intermetallic Ti2AlNb,” Progress in Materials Science, 42, 135–158 (1997).

    Article  CAS  Google Scholar 

  27. L. Tretyachenko, “Aluminium–niobium–titanium,” in: Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology (New Ser.), Group IV: Physical Chemistry. “Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT”. Ed. W. Martinsen. Springer-Verlag (2005).

  28. H. T. Kestner-Weykamp, C. H. Ward, T. F. Broderick, and M. J. Kaufman, “Microstructures and phase relationships in the Ti3Al + Nb system,” Scripta Metallurgica, 23, 1697–1702 (1989).

    Article  CAS  Google Scholar 

  29. A. G Illarionov, S. V. Grib, A. A. Popov, S. L. Demakov, M. S. Karabanalov, O. G. Zhadhieva, and O. A. Elkina, “Effect of hydrogen in formation of structure and phase composition in alloy based upon Ti2AlNb,” Fiz. Metall. Mtealloved., 109, No. 2., 154–164 (2010).

    CAS  Google Scholar 

  30. S. V. Skvortsova, O. Z. Pozhoga, A. V. Ocghinnikov, and A. A. Orlov, “Effect of thermal hydrogen treatment of production and mechanical properties of heart-resistant intermetallic alloys VTI-4,” Deform. Razrush. Materialov., No. 1, 16–23 (2019).

  31. S. V. Skvortsova, O. Z. Pozhoga, V. A. Pozhoga, and A. E. Ivanov, “Effect of additional alloying with hydrogen on structure and phase composition of intermetallic alloy VTI-4,” Metally, No. 6, 3–13 (2019).

    Google Scholar 

  32. S. V. Skovrtsova, O. N. Grozdeva, S. S. Slezov, and T. G. Yagudin, “Hydrogen technology as an effective production method for controlling the structure, mechanical and production properties of alloys based upon titanium and titanium aluminide,” Titan, No. 4 (54), 49–53 (2016).

    Google Scholar 

  33. O. G. Khadzhieva, A. G. Illarionov, and A. A. Popov, “Effect of hydrogen on structure formation processes and deformation capacity of alloys based upon orthorhombic titanium aluminide,” Titan, No. 4(38), 21–26 (2012).

    Google Scholar 

  34. A. G. Illarionov,O. G. Khadzhieva, and E. D. Merson, “Dehydrogenation during annealing or continuous heating of alloy based upon titanium nitride alloyed with hydrogen,” Metall. Term. Obrab. Metallov., No. 7 (781), 17–22 (2020).

  35. C. Xue, W. D. Zeng, W. Wang, X. B.,Liang, and J. W. Zhang, “Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment,” Mater. Sci. Eng. A, 573, 183–189 (2013).

  36. L. Germann, D. Banerjee, J. Y. Guédou, and J. L Strudel, “Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide,” Intermetallics, 13, 920−924 (2005).

    Article  CAS  Google Scholar 

  37. Chen Yu-yong, Si Yu-feng, Kong Fan-tao, Liu Zhiguang, and Li Jun-wen, “Effects of yttrium on microstructures and properties of Ti–17Al–27Nb alloy,” Trans. Nonferrous Met. Soc. China, 16, 316–320 (2006).

    Article  Google Scholar 

  38. O. Z. Umarov, Features of Phase Composition and Structure Formation within Heat-Resistant Alloy Based Upon Titanium Intermetallic VTI-4 During Heat and Thermal-Hydrogen Treatment [in Russian], Diss. Cand. Techn. Sci., MAI, Moscow (2017).

  39. Y. Zhang, Y. Liu, L. Yu, H. Liang, Y. Huang, and Z. Ma, “Microstructures and tensile properties of Ti2AlNb and Mo modified Ti2AlNb alloys fabricated by hot isostatic pressing,” Mat. Sci. Eng. A, 776, 139043 (2020).

    Article  CAS  Google Scholar 

  40. Seung Jin Yang, Soo Woo Nam, and Masuo Hagiwara, “Phase identification and effect of W on the microstructure and micro-hardness of Ti2AlNb-based intermetallic alloys,” J. Alloys and Compounds, 350, 280–287 (2003); https://doi.org/https://doi.org/10.1016/S0925-8388(02)00956-8.

    Article  Google Scholar 

  41. J. Yang, Q. Cai, Z. Ma, Y. Huang, L. Y. and H. Li, “Effect of W addition on phase transformation and microstructure of powder metallurgic Ti–22Al–25Nb alloys during quenching and furnace cooling,” Chinese J. Aeronaut., 32, 1343–1351 (2019).

  42. J. Das, A. K. Gogia, and D. V. V. Satyanarayana, “Effect of iron and nickel impurities on creep and tensile behavior of Ti–24Al–20Nb–0.5Mo alloy,” Mater. Sci. Eng. A, 496, 1–8 (2008.)

    Article  Google Scholar 

  43. E. N. Kablov, N. A. Nocovnaya, P. V. Panin, E. B. Alekseev, and A. V. Novak, “Stucy of the structure and properties of heat-resistant alloy based upon orthorhombic titanium aluminide,” Metariallovedenie, No. 3, 3–10 (2017).

    Google Scholar 

  44. A. V. Novak, N. A. Nochovnaya, and E. B. Alekseev, Effect of rare earth elements on structure and properties of alloy based upon authorhombic titanium aluminide,” Titan, No. 4 (66), 17–23 (2019).

    Google Scholar 

  45. Q. Cai, M. C., Li, Y. R. Zhang, Y. C. Liu, and H. J. Li, “Precipitation behavior of Widmanstaten O phase associated with interface in aged Ti2AlNb -based alloys,” Mater. Charact., 145, 413–422 (2018).

  46. X. Yang, B. Zhang, Q. Bai, and G. Xie, “Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment,” Intermetallics, 139, 107367 (2021).

    Article  CAS  Google Scholar 

  47. M. S. Oglodkov, V. A. Duyunova, N. A. Nochovnaya, V. I. Ivanov, and L. Yu. Avilochev, “Features of technology for preparing wrought workpieces of intermetallic alloy VIT1 for gas turbine engine components,” Trudy VIAM¸ No. 12, 1–13 (2021).

  48. A. V. Zavodov, N. A. Nochovnaya, A. A. Lyakhov, and E. V. Filonova, “Effect of deformation band on the strength of a rolled plate of intermetallic titanium alloy based on Ti–22Al–25Nb system,” Materials Characterization, 180, 111438 (2021).

    Article  CAS  Google Scholar 

  49. A. V. Novak, N. A. Nochovnaya, and E. B. Alekseev, “Influence of the deformation parameters on the morphology of the strengthening of phase and the mechanical properties of an intermetallic VIT5 titanium alloy,” Russian Metallurgy (Metally), No. 4, 318–324 (2020).

    Google Scholar 

  50. V. S. Salenkov, and A. G. Fridman, RF Patent RU 2375484. Alloy Based Upon Titanium, Publ. 10.12. 2009. Bull. No. 34.

  51. Hongyu Zhang, Na Yan, Hongyan Liang, and Yongchang Liu, “Phase transformation and microstructure control of Ti2AlNb -based alloys: A review,” J. Materials Science & Technology, 80, 203–216 (2021).

    Article  CAS  Google Scholar 

  52. K. Goyal and N. Sardana, Phase stability and microstructural evolution of Ti2AlNb alloys-a review,” Materials Today: Proc., 41, 951–968 (2021).

    CAS  Google Scholar 

  53. Liu Shishuang, Cao Jingxia, Zhou Yi, Dai Shenglong, Huang Xu, and Cao Chunxiao, “Research and prospect of Ti2AlNb alloy,” The Chinese J. Nonferrous Metals (2021); DOI: https://doi.org/10.11817/j.ysxb.1004.0609.2021-42420.

    Article  Google Scholar 

  54. F. A. Sadi and C. Servant, “On the B2 → O phase transformation in Ti–Al–Nb alloys,” Mater. Sci. Engineering: A, 346, 19–28 (2003).

    Article  Google Scholar 

  55. N. V. Kazantseva, S .L. Demakov, and A. A. Popov, “Microstructure and plastic deformation of orthorhombic titanium aluminides Ti2AlNb. III. Formation of transformation twins upon the B2→O phase transformation,” The Physics Metals and Metallography, 103, No. 4, 378–387 (2007).

    Article  Google Scholar 

  56. K. Muraleedharan, A. K. Gogia, T. K. Nandy, D. Banerjee, and S. Lele, “Transformations in a Ti–24AI–15Nb alloy: Part I. Phase equilibria and microstructure,” Metall. Trans. A, 23A, No. 2, 401–415 (1992).

    Article  CAS  Google Scholar 

  57. Y. Wu, and S. K. Hwang, “O-phase and carbides precipitation in intermetallics based on Ti–Al,” Metals and Materials Intern., No. 7, 191–199 (2001).

  58. O. G. Zhazhdieva, A. G. Ilarionov, and A. A. Popov, Effect of ageing on the structure and properties of hardened alloy based upon orthorhombic titanium aluminide (Ti2AlNb),” Fiz. Metall. Metalloved, 115, No. 1, 14–22 (2014).

    Google Scholar 

  59. W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, and X. Liang, “Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition,” Mater. Sci. Eng. A, 662, 120–128 (2016).

    Article  CAS  Google Scholar 

  60. S. L. Demakov, E. M. Komolikova, F. V. Vodolazskii, and A. A. Popov, “A Diagram of isothermal decomposition of the β-phase in Ti–22Al–26Nb–0.5Zr–0.4Mo alloy,” Materials Science, 44. No. 3, 374–379 (2008).

    Article  CAS  Google Scholar 

  61. C. Xue, W. Zeng, B. Xu, X. Lian, J. Zhang, and S. Li, “B2 grain growth and particle pinning effect of Ti–22Al–25Nb orthorhombic intermetallic alloy during heating process,” Intermetallics, 29, 41–47 (2012).

    Article  CAS  Google Scholar 

  62. J. Peng, Y. Mao, S. Li, and X. Sun, “Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys,” Mater. Sci. Eng. A, 299, 75–80 (2001).

    Article  Google Scholar 

  63. M. Hagiwara, S. Emura, A. Araok, B. O. Kong, and F. Tang, “Enhanced mechanical properties of orthorhombic Ti2AlNb based intermetallic alloy,” Met. Mater. Int., No. 9, 265–272 (2003).

  64. S. Emura, A. Araoka , and M. Hagiwara, “B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy,” Scripta Mater., 48, No. 5, 629–634 (2003).

    Article  CAS  Google Scholar 

  65. A. K. Gogia, D. Banerjee, and T. K. Nandy, “Structure, tensile deformation, and fracture of a Ti3Al–Nb alloy,” Metall. Trans. A, 21, 609–625 (1990).

    Article  Google Scholar 

  66. W. Wang, W. Zeng, C. Xue, X. Liang, and J. Zhang, “Microstructure control and mechanical properties from isothermal forging and heat treatment of Ti–22Al–25Nb (at.%) orthorhombic alloy,” Intermetallics, 56, 79–86 (2015).

    Article  CAS  Google Scholar 

  67. Y. Zheng, W. Zeng, D. Li, Q. Zhao, X. Liang, J. Zhang, and X. Ma, “Fracture toughness of the bimodal size lamellar O phase microstructures in Ti–22Al–25Nb (at.%) orthorhombic alloy,” J. Alloys Compd., 709, 511–518 (2017).

    Article  CAS  Google Scholar 

  68. W. Wei, Z. Weidon.,X. Chen, L. Xiaobo, and Z. Jianwei, “Designed bimodal size lamellar O microstructures in Ti2AlNb based (alloy): Microstructural evolution, tensile and creep properties,” Mater. Sci. Eng. A, 618, 288–294 (2014).

  69. C. J. Boehlert, “Part III. The tensile behavior of Ti–Al–Nb O + Bcc orthorhombic alloys,” Metall Mater Trans. A, 32, 1977–1988 (2001).

    Article  Google Scholar 

  70. C .J. Cowen and C. J. Boehlert, “Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb(at.%) orthorhombic + B2 alloy,” Intermetallics, 14, 412–422 (2006).

    Article  CAS  Google Scholar 

  71. W. Wang, W. Zeng, Y. Liu, G. Xie, and X. Liang, “Microstructural and mechanical properties of Ti22Al-25Nb (At.%) evolution orthorhombic alloy with three typical microstructures,” J. Mater Eng. Perform., 27, 293–301 (2018).

    Article  CAS  Google Scholar 

  72. C. Xue, W. D. Zeng, W. Wang, X. B. Liang, and J. W. Zhang, “Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti–22Al–25Nb alloy,” Mater. Sci. Eng. A, 611, 320–327 (2014).

    Article  Google Scholar 

  73. G. A. Salishchev, R. M. Imayev, V. M. Imayev, M. R. Shagiev, and F. H. Sam Froes. “Formation of submicrocrystalline structure in titanium aluminides and their mechanical properties,” Solid State Phenomena, 114, 29–38 (2006).

  74. M. R. Shagiev and G. A. Salishchev, “Microstructure and mechanical properties of nanostructured intermetallic alloy based on Ti2AlNb,” Materials Science Forum, 584–586 Part 1, 153–158 (2008).

  75. S. J. Qu, A. H. Feng, M. R. Shagiev, H. Xie, B. B. Li, and J. Shen, “Superplastic behavior of the fine-grained Ti–21Al–18Nb1Mo–2V–0.3Si intermetallic alloy,” Letters on Materials, 8, 567–571 (2018).

    Article  Google Scholar 

  76. S. Wang, W. Xu, Y. Zong, X. Zhong, and D. Shan, “Effect of initial microstructures on hot deformation behavior and workability of Ti2AlNb -based alloy,” Metals, No. 8, 382–342 (2018).

    Article  Google Scholar 

  77. K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: A Rev.,” Trans Indian Inst Met., 74, No. 8, 1839–1853 (2021).

    Article  Google Scholar 

  78. V. I. Ivanov, and N. A. Nochovnaya, “Prospects of using heart-resistant materials based upon titanium aluminides,” Titan, No. 1, 44-48 (2007).

    Google Scholar 

  79. I. S. Pol’kin, O. N. Grebenok, and V. S. Salenkov, “Intermetallics based upon titanium,” Tekhnol Legkih Splavov, No. 2, 5–15 (2010).

  80. O. S. Kashapov, A. V. Novak, N. A. Nochovnaya, and T. V. Pavlova, “State, problems, and prospects of creating heat-resistant titanium alloys for GTE components,” Trudy VIAM, No. 3, 1–9 (2013).

    Google Scholar 

  81. S. V. Skvortsova, A. A. Il’in, A. M. Mamonov, N. A. Nochovnaya, and O. Z. Umarova, “Structure and properties of semifinished sheet products made of an intermetallic refractory alloy based on Ti2AlNb,” Materials Science, 51, No. 6, 821–826 (2016).

  82. Y. H. Zhou, D. W. Wang, L. J. Song, A. Mukhtar, D. N. Huang, C. Yang, and M. Yan, “Effect of heat treatments on the microstructure and mechanical properties of Ti2AlNb intermetallic fabricated by selective laser melting,” Materials Science & Engineering A, 817, 141352 (2021).

    Article  CAS  Google Scholar 

  83. X. Yang, B. Zhang, Q. Bai, and G. Xie, “Correlation of microstructure and mechanical properties of Ti2AlNb manufactured by SLM and heat treatment,” Intermetallics, 139, 107367 (2021).

    Article  CAS  Google Scholar 

  84. K.-H. Sim, G. Wang, T.-J. Kim, and K.-S. Ju, “Fabrication of a high strength and ductility Ti–22Al–25Nb alloy from high energy ball-milled powder by spark plasma sintering,” J. Alloys and Compounds, 741, 1112–1120 (2018).

    Article  CAS  Google Scholar 

  85. Heat-Resistant Intermetallic Alloys. 13 April 2016 // https://viam.ru › review › 2942.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Illarionov.

Additional information

Translated from Metallurg, Vol. 67, No. 3, pp. 42–54, March, 2023. Russian DOI https://doi.org/10.52351/00260827_2023_03_42.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illarionov, A.G., Demakov, S.L., Vodolazskiy, F.V. et al. Alloys Based on Orthorhombic Intermetallic Ti2AlNb: Phase Composition, Alloying, Structure, Properties. Metallurgist 67, 305–323 (2023). https://doi.org/10.1007/s11015-023-01518-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01518-z

Keywords

Navigation