Skip to main content
Log in

Electrochemical Investigation of the Corrosion Resistance of Metal for Oil and Gas Pipelines

  • Published:
Metallurgist Aims and scope

The corrosion rate of Nb-microalloyed Cr–Mn steel in an environment with varying parameters such as temperature, pH, and dissolved carbon dioxide concentration was determined by gravimetric and electrochemical methods (the linear polarization resistance method and the Tafel extrapolation method). The degree of influence of each of these parameters was established. The convergence of the results obtained by electrochemical and gravimetric methods is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Yan, J. G. Deng, X. R. Li, X. L. Dong, and C. Y. Zhang, “ Effects of silty sand on CO2 corrosion behavior of low-Cr tubing steel,” Chinese Sci. Bull., 57, No. 8, 927–934 (2012); DOI: https://doi.org/10.1007/s11434-011-4947-4.

    Article  CAS  Google Scholar 

  2. J. Hernandez, A. Munoz, and J. Genesca, “ Formation of iron-carbonate scale-layer and corrosion mechanism of APIX70 pipeline steel in carbon dioxide-saturated 3% sodium chloride,” Afinidad, 69, No. 560, 251–258 (2012).

    CAS  Google Scholar 

  3. L. R. M. Ferreira, H. A. Ponte, L. S. Sanches, and A. C. T. G. Abrantes, “CO2 corrosion in the region between the static and turbulent flow regimes,” Mater. Res., 18, No. 2, 245–249 (2015); DOI: https://doi.org/10.1590/1516-1439.279314.

    Article  Google Scholar 

  4. L. Onyeji and G. Kale, “ Preliminary investigation of the corrosion behavior of proprietary micro-alloyed steels in aerated and deaerated brine solutions,” J. Mater. Eng. Perform., 26, No. 12, 5741–5752 (2017); DOI: https://doi.org/10.1007/s11665-017-3031-x.

    Article  CAS  Google Scholar 

  5. A. N. Markin, R. E. Nizamov, and S. V. Sukhoverkhov, “Oilfield chemistry: a practical guide,” Vladivostok: Dal'nauka, 288 (2011).

  6. S. Nesic, “Key issues related to modeling of internal corrosion of oil and gas pipelines, a review,” Corrosion Sci., 49, No. 12, 4308–4338 (2007); DOI: https://doi.org/10.1016/j.corsci.2007.06.006.

    Article  CAS  Google Scholar 

  7. M. Nordsveen, S. Nesic, R. Nyborg, and A. Stangeland, “ A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films, Part 1: Theory and verification,” Corrosion, 59, No. 5, 443–456 (2003); DOI: https://doi.org/10.5006/1.3277576.

    Article  CAS  Google Scholar 

  8. S. Nesic, K. L. J. Lee, and V. Ruzic, A Mechanistic Model of Iron Carbonate Film Growth and the Effect on CO2 Corrosion of Mild Steel, in NACE Corrosion, No. 02237 (2002).

  9. S. Ieamsupapong, B. Brown, M. Singer, and S. Nesic, Effect of pH Solution on Corrosion Product Layer Formation in a Controlled Water Chemistry System, in NACE Corrosion, No. 9160 (2017).

  10. Almeida T. Das Chagas, M. C. E. Bandeira, R. M. Moreira, and O. R. Mattos, “The role of CO2 on carbon steel corrosion,” in: NACE Corrosion, No. 5807 (2015).

  11. D. Li, W. Ma, D. Han, L. Zhang, M. Lu, and L. Wang, “Effects of temperature on CO2 corrosion of tubing and casing steel,” in: NACE Corrosion, No. 2426 (2013).

  12. S. Li, Z. Zeng, M. A. Harris, L. J. Sanchez, and H. Cong, “ CO2 corrosion of low carbon steel under the joint effects of timetemperature-salt concentration,” Front. Mater., 6 (2019); DOI: https://doi.org/10.3389/fmats.2019.00010.

  13. H. Bai, Y. Wang, Y. Ma, Q. Zhang, and N. Zhang, “Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture,” Materials (Basel), 11, No. 9 (2018); DOI: https://doi.org/10.3390/ma11091765.

  14. Y. Cheng, Y. Bai, Z. Li, and J. G. Liu, “ The corrosion behavior of X65 steel in CO2/oil/water environment of gathering pipeline,” Anti-Corros. Method. Mater., 66, No. 2, 174–187 (2019); DOI: https://doi.org/10.1108/ACMM-07-2018-1969.

    Article  CAS  Google Scholar 

  15. A. N. Mohammed, M. F. Suhor, M. F. Mohamed, M. Singer, and S. Nesic, “Corrosion of carbon steel in high CO2 environment: flow effect,” in: NACE Corrosion, No. 11242 (2011).

  16. K. R. Kanimozhi, S. Papavinasam, R. Shyamala, and J. Li, “Effect of sodium chloride concentration on the corrosion of carbon steels and stainless steels in co2 environment at atmospheric pressure under turbulent flow condition,” in: NACE Corrosion, No. 4074 (2014).

  17. A. N. Markin and R. E. Nizamov, CO2 as Corrosion of Oilfield Equipment [in Russian], OAO VNIIOENG, Moscow (2003).

    Google Scholar 

  18. ASTM G102–89(2015). Standard Practice for Calculation of Corrosion Rates and Related Information; DOI: https://doi.org/10.1520/G0102-89R15E01.

  19. A. Kahyarian, B. Brown, and S. Nesic, “Mechanism of CO2 corrosion of mild steel: a new narrative,” in: NACE Corrosion, No. 11232 (2018).

  20. M. Henriquez, N. Pebere, N. Ochoa, and A. Viloria, “Electrochemical investigation of the corrosion behavior of API 5L-X65 carbon steel in carbon dioxide medium,” Corrosion, 69, No. 12, 1171–1179 (2013); DOI: https://doi.org/10.5006/0971.

    Article  CAS  Google Scholar 

  21. Z. Zeng, R. S. Lillard, and H. Cong, “ Effect of salt concentration on the corrosion behavior of carbon steel in CO2 environment,” Corrosion, 72, No. 6, 805–823 (2016); DOI: https://doi.org/10.5006/1910.

    Article  CAS  Google Scholar 

  22. ASTM G1–03(2017). Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens; DOI: https://doi.org/10.1520/G0001-03R17E01.

  23. A. Kahyarian and S. Nesic, “A new narrative for CO2 corrosion of mild steel,” J. Electrochem. Soc., 166, No. 11, C3048–C3063 (2019); DOI: https://doi.org/10.1149/2.0071911jes.

    Article  CAS  Google Scholar 

  24. F. Pessu, R. Barker, and A. Neville, “CO2 corrosion of carbon steel: The synergy of chloride ion concentration and temperature on metal penetration,” Corrosion, 76, No. 11 (2020); DOI: https://doi.org/10.5006/3583.

  25. K. Videm, “The influence of pH and concentration of bicarbonate and ferrous ions on the CO2 corrosion of mild steels,” Corrosion, No. 83 (1993).

  26. J. K. Heuer and J. F. Stubbins, “Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow,” Corrosion (1998); DOI: https://doi.org/10.5006/1.3284885.

    Article  Google Scholar 

  27. S. Nesic, J. Postlethwaite, and M. Vrhovac, “ CO2 corrosion of carbon steel ― from mechanistic to empirical modeling,” Corros. Rev., 15, No. 1/2, 211–240 (1997); DOI: https://doi.org/10.1515/CORRREV.1997.15.1-2.211.

    Article  CAS  Google Scholar 

  28. A. A. El Miligy, D. Geana, and W. J. Lorenz, “A theoretical treatment of the kinetics of iron dissolution and passivation,” Electrochim. Acta, 20, No. 4, 273–281 (1974); DOI: https://doi.org/10.1016/0013-4686(75)90005-5.

    Article  Google Scholar 

  29. M. G. R. Mahlobo, K. Premlall, and P. A. Olubambi, “Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion,” IOP Conf. Ser. Mater. Sci. Eng., 272, No. 1 (2017); DOI: https://doi.org/10.1088/1757-899X/272/1/012032.

  30. A. Mohamed and P. Oyekola, “Carbon dioxide corrosion in oil and gas industry,” Int. J. Adv. Sci. Technol., 29, No. 7, 10053–10065 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Pyshmintsev.

Additional information

Translated from Metallurg, Vol. 67, No. 2, pp. 27–33, February, 2023. Russian https://doi.org/10.52351/00260827_2023_02_27

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyshmintsev, I.Y., Vavilova, O.V., Mansurova, E.R. et al. Electrochemical Investigation of the Corrosion Resistance of Metal for Oil and Gas Pipelines. Metallurgist 67, 137–147 (2023). https://doi.org/10.1007/s11015-023-01497-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01497-1

Keywords

Navigation