Skip to main content

Advertisement

Log in

Effect of Deformation by High-Pressure Torsion in a Combined Matrix on the Properties of Brass

  • Published:
Metallurgist Aims and scope

This article discusses the changes in the microstructure and properties of brass billets for antifriction rings under intense plastic deformation caused by high-torsion under in a combined matrix. Deformation experiment was performed at room temperature for six cycles. Results revealed that from the initial state, brass showed a threefold increase in strength and microhardness (from 820 MPa to 2115 MPa) after deformation. The greatest increase in strength properties occurred during the first two deformation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. V. Zinoviev, A. N. Koshmin, and A. Ya. Chasnikov, “ Influence of the parameters of the process of continuous pressing on the formation of the microstructure and the mechanical properties of round rods from alloy M1,” Metallurg, No. 4, 16–23 (2019).

  2. I. E. Volokitina and G. G. Kurapov, “ Effect of initial structural state on formation of structure and mechanical properties of steels under ECAP,” Metal Sci. Heat Treat., 59(11/12), 786–792 (2018).

    Article  CAS  Google Scholar 

  3. P. Eslami and Taheri A. Karimi, “An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process,” Mater. Lett., 65, 1862–1864 (2011).

  4. A. Boikov, V. Payor, R. Savelev, and A. Kolesnikov, “ Synthetic data generation for steel defect detection and classification using deep learning,” Symmetry, 13(7), 1176 (2021).

    Article  CAS  Google Scholar 

  5. G. Raab, R. Valiev, T. Lowe, and Y. Zhu, “Continuous processing of ultrafine grained A1 by ECAP-Conform,” Mater. Sci. Eng., 382, 30–34 (2004).

    Article  Google Scholar 

  6. I. Volokitina, A. Naizabekov, E. Panin, and A. Volokitin, “Effect of ECAP-drawing on the microstructure of a bimetallic wire,” Metallurgist, 65 (7/8), 769–774 (2021).

    Article  CAS  Google Scholar 

  7. A. Naizabekov and I. Volokitin, “Effect of the initial structural state of Cr–Mo high-temperature steel on mechanical properties after equal-channel angular pressing,” Phys. Met. Metallogr., 120, 177–183 (2019).

    Article  Google Scholar 

  8. A. Bachmaier, T. Grosdidier, and Y. Ivanisenko, “Severe plastic deformation and thermomechanical processing: nanostructuring and properties,” Metals, 10, 1306 (2020).

    Article  Google Scholar 

  9. G. Raab, R. Valiev, T. Lowe, and Y. Zhu, “Continuous processing of ultrafine grained A1 by ECAP-Conform,” Mater. Sci. Eng., 382, 30–34 (2004).

    Article  Google Scholar 

  10. Z. Horita, T. Fujinami, and T. Langdon, “The potential for scaling ECAP: Effect of sample size on grain refinement and mechanical properties,” Mater. Sci. Eng. A., 318 (1/2), 34–41 (2001).

    Article  Google Scholar 

  11. R. Valiev, Y. Estrin, Z. Horita, T. Langdon, M. Zehetbauer, and Y. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation: ten years later,” J. Met., 68, 1216–1226 (2016).

    CAS  Google Scholar 

  12. M. Polyakova, A. Gulin, and D. Constantinov, “Investigation of microstructure and mechanical properties of carbon steel wire after continuous method of deformational nanostructuring,” Appl. Mech. Mater., 436, 11–120 (2013).

    Article  Google Scholar 

  13. M. Kawasaki, B. Ahn, H. J. Lee, A. P. Zhilyaev, and T. G. Langdon, “ Using high-pressure torsion to process an aluminummagnesium nanocomposite through diffusion bonding,” J. Mater. Res., 31, 8–99 (2015).

    Google Scholar 

  14. I. Choi, R. Schwaiger, L. Kurmanaeva, and O. Kraft, “On the effect of Ag content on the deformation behavior of ultrafine-grained Pd–Ag alloys,” Scr. Mater., 61, 64–67 (2009).

    Article  CAS  Google Scholar 

  15. R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., 45, 103–189 (2000).

    Article  CAS  Google Scholar 

  16. A. Zhilyaev and T. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci., 53, 893–979 (2008).

    Article  CAS  Google Scholar 

  17. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “ Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Met., 58, 33–39 (2006).

    Google Scholar 

  18. M. Yu. Murashkin, I. Sabirov, and V. U. Kazykhanov, “ Enhanced mechanical properties and electrical conductivity in ultrafinegrained Al alloy processed via ECAP-PC,” J. Mater. Sci., 48, 4501–4509 (2013).

    Article  CAS  Google Scholar 

  19. M. Dao, L. Lu, R. Asaro, J. Hosson, and E. Ma, “ Toward a quantitative understanding of mechanical behavior of nanocrystalline metals,” Acta Mater., 55, 4041–4065 (2007).

    Article  CAS  Google Scholar 

  20. O. L. Khasanov, E. S. Dvilis, and Z. G. Bikbaeva, Methods of Compaction and Consolidation of Nanostructured Materials and Products, Publishing House of Tomsk Polytechnic University, Tomsk (2008).

    Google Scholar 

  21. C. Xu, Z. Horita, and T. G. Langdon, “The evolution of homogeneity in processing by high-pressure torsion,” Acta Mater., 55, 203–212 (2007).

    Article  CAS  Google Scholar 

  22. S. Erbel, “Mechanical properties and structure of extremely strain-hardened copper,” Met. Technol., 6, 482–486 (1979).

    Article  CAS  Google Scholar 

  23. A. P. Zhilyaev, G. Ringot, Yi. Huang, J. M. Cabrera, and T. G. Langdon, “ Mechanical behavior and microstructure properties of titanium powder consolidated by high-pressure torsion,” Mater. Sci. Eng. A., 688, 498–504 (2017).

  24. A. Volokitin, I. Volokitina, E. Panin, A. Naizabekov, and S. Lezhnev, “Strain state and microstructure evolution of AISI-316 austenitic stainless steel during high-pressure torsion (HPT) process in the new stamp design,” Metalurgija, 60 (3/4), 325–328 (2021).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Volokitina.

Additional information

Translated from Metallurg, Vol. 66, No. 12, pp. 81–85, December, 2022. Russian DOI:https://doi.org/10.52351/00260827_2022_12_81.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volokitina, I.E., Volokitin, A.V., Kolesnikov, A.S. et al. Effect of Deformation by High-Pressure Torsion in a Combined Matrix on the Properties of Brass. Metallurgist 66, 1601–1606 (2023). https://doi.org/10.1007/s11015-023-01475-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-023-01475-7

Keywords

Navigation