Skip to main content
Log in

Selection of Hot Plastic Deformation Regimes for Large Workpieces According to Mechanical Energy Distribution Criteria

  • Published:
Metallurgist Aims and scope

Work is devoted to selecting parameters for a hot plastic deformation regime for alloy KhN55MVTs-ID on the basis of analyzing a distribution map for mechanical energy dissipation coefficients. The map is constructed from results of simulation modeling of deformation regimes for alloy samples in the temperature range 900–1140°C and strain rates of 10–3–10 sec–1. Metallographic analysis and a study of the sructure using electron microscopy are used for dissipation coefficients close to extreme values. The expediency of using a map for the process of finding favorable conditions for hot plastic deformation of alloy KhN55MVTs-ID is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. S. Oryshchenko, G. P. Karzov, A. S. Kudryavtsev, Yu. M. Trapeznikov, D. A. Artem’eva, and K. A. Okhapkin, RF Patent2546587 S2, Nickel-base heat-resistant alloy, Claim 07.09.2013, Publ. 03.10.15, Bull. No. 7.

  2. V. K. Barakhtin, N. R. Vargasov, and A. I. Rudskoi, “Modification of thermomechanical treatment for rail steel by means of a map of the process,” Materialovedenie, No. 6, 8–14 (2015).

    Google Scholar 

  3. Y. V. R. K. Prasad and S. Sasidhara, Hot Working Guide. A Compendium of Processing Maps, Department of Metallurgy Indian Institute of Science, Bangalore (2004).

    Google Scholar 

  4. N. R. Vargasov and V.V. Rybin, “Optimization of temperature and rate for plastic deformation regimes according to a mechanical energy dissipation criterion,” Metalloved. Term. Obrab. Metallov., No. 9, 52–56 (1999).

    Google Scholar 

  5. Yu. I. Rybin and A. I. Rudskoi, Mathematical Modeling and Planning of Production Processes for Metal Forming [in Russian], SPbGPU, St. Petersburg (2004).

    Google Scholar 

  6. A. S. Oryshchenko, V. A. Malyshevskii, B. K. Barakhtin, N. R. Vargasov, and A. M. Nemets, “Procedural behavior of plastothermal tests for structural metals and alloys,” in: Handbook for Use of TsKP FGUP TsNII KM Prometei Equipment “Composition, Structure and Properties of Functional and Structural Materials,” [in Russian], Izd. FGUP KM Prometei, St. Petersburg (2010).

    Google Scholar 

  7. V. A. Malyshevskii, E. I. Khlusova, and B. K. Barakhtin, “Structural and mechanical state of prospective FCC alloys under hot plastic deformation conditions,” Vopr. Metarialovedeniya, No. 4(64), 7–20 (2010).

    Google Scholar 

  8. B. K. Barakhtin, N. R. Vargasov, A. M. Nemets, and E. I. Khlusova, “Selection of thermomechanical treatment regime for steels and alloys based on systematic analysis of the structure and simulation modeling,” Fiz. Mekhan. Materialov., 12, No. 1, 30–42 (2011).

    CAS  Google Scholar 

  9. B. K. Barakhtin and A. M. Nemets, Metals and Alloys. Analysis and Study. Physico-Analytical Methods for Studying Metals and Alloys. Nonmetallic Inclusions: Handbook [in Russian], NPO Professional, St. Petersburg (2006).

    Google Scholar 

  10. B. K. Barakhtin, “Features of polyscale trasfromation in structural steels and alloys under hot conversion conditions,” Coll. Physicochemical Aspects of Studying Clusters, Nanostructures, and Nano-Materials, Tver’ Gos. Univ., Tver, No. 6, 29–40 (2014).

    Google Scholar 

  11. A. D. Kashtanov, S. N. Petrov, A. S. Kudryavtsev, K. A. Okhapkin, and D. A. Gruzdev, “Analysis of reasons for crack formation during hot plastic deformation of alloy grade KhN55MVTs-ID,” Vopr. Materialoved., No. 4(84), 17–22 (2015).

    Google Scholar 

  12. G. P. Karzov, A. D. Kashtanov, A. S. Kudryavtsev, K. A. Okhapkin, and D. A. Gruzdev, “Effect of chemical inhomogeneity on “hot” mechanical properties of alloy KhN55MVTs-ID and increase in adaptability during thermal deformation action,” Vopr. Materialoved., No. 4(84), 23–28 (2015).

    Google Scholar 

  13. A. I. Rudskoi, N. R. Vargasov, and B. K. Barakhtin, Thermoplastic Deformation of Metals [in Russian], Izd. Politekh. Univ., St. Petersburg (2018).

    Google Scholar 

  14. K. A. Okhapkin, A. S. Kudryavtsev, D. A. Gruzdev, and G. K. Rerikh, “Analysis of physicomathematical model and development of recommendations for a large scale forging scheme for alloy grade KhN55MVTs-ID,” Nauch-Tekhn. Vedom. Sankt-Peter. Gos. Politekh. Univ, No. 1(238), 122–128 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Barakhtin.

Additional information

Translated from Metallurg, Vol. 64, No. 7, pp. 91–96, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barakhtin, B.K., Petrov, S.N., Okhapkin, K.A. et al. Selection of Hot Plastic Deformation Regimes for Large Workpieces According to Mechanical Energy Distribution Criteria. Metallurgist 64, 709–715 (2020). https://doi.org/10.1007/s11015-020-01047-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-020-01047-z

Keywords

Navigation