Skip to main content
Log in

A pseudo 3D cooling heat sink model designed by multi-objective topology optimization method

  • Machines
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper designs a water-cooled pseudo 3D heat sink structure using two-layer heat sink model applying the topology optimization method (TOM) based on rational approximation of material properties (RAMP) functions. The governing equations consist of the continuity, Navier–Stokes, and energy balance equations with forced convection and the optimization design problem is formulated as the minimization of power dissipation and thermal resistance. Compared with the one-layer heat sink model in terms of optimized design, temperature distribution and velocity distribution, the two-layer heat sink model was proved to have better heat transfer capability because it does not ignore the resistance in fluid channel regions. The optimized heat sink structure is manufactured, and measured about temperature distributions on the upper surface of the heat sink and pressure drop between inlet and outlet. Through the comparison of temperature distribution and pressure drop between numerical results and experimental tests under different spacial position and Reynolds numbers, the physical validity of the developed model is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Device Lett 2(5):126–129

    Article  Google Scholar 

  2. Liu S, Zhang Y, Liu P (2006) Heat transfer and pressure drop in fractal microchannel heat sink for cooling of electronic chips. Int J Heat Mass Transf 44(2):221–227

    Article  Google Scholar 

  3. Bendsøe MP, Kikuch N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  4. Gersborg-Hansen A, Bendsøe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidisc Optim 31(2):251–259

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruns TE (2007) Topology optimization of convection-dominated, steady-state heat transfer problems. Int J Heat Mass Transf 50(15–16):2859–2873

    Article  MATH  Google Scholar 

  6. Borrval T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Meth Fluids 41(2):77–107

    Article  MathSciNet  MATH  Google Scholar 

  7. Aage N, Poulsen TH, Gersborg-Hansen A (2008) Topology optimization of large scale Stokes flow problems. Struct Multidiscip Optim 35(2):175–180

    Article  MathSciNet  MATH  Google Scholar 

  8. Gersborg-Hansen A, Sigmund O, Haber R (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30(2):181–192

    Article  MathSciNet  MATH  Google Scholar 

  9. Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975–1001

    Article  MathSciNet  MATH  Google Scholar 

  10. Pingen G, Egrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscip Optim 34(6):507–524

    Article  MathSciNet  MATH  Google Scholar 

  11. Sigmund O (2001) Design of multiphysics actuators using topology optimization—part I: one-material structures. Comput Methods Appl Mech Eng 190(49):6577–6604

    Article  MATH  Google Scholar 

  12. Adham AM, Mohd-Ghazalia N, Ahmad R (2013) Thermal and hydrodynamic analysis of microchannel heat sinks. A review. Renew Sustain Energy Rev 21(C):614–622

    Article  Google Scholar 

  13. Dede EM (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. COMSOL Conference

  14. Yoon GH (2010) Topological design of heat dissipating structure with forced convective heat transfer. Int J Mech Sci 24(6):1225–1233

    Google Scholar 

  15. Marck G, Nemer M, Harion JL (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numer Heat Transf Part B 63(6):508–539

    Article  MATH  Google Scholar 

  16. Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transf 100:876–891

    Article  Google Scholar 

  17. Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O (2018) Density based topology optimization of turbulent flow heat transfer systems. Struct Multidiscip Optim 57(5):1905–1918

    Article  MathSciNet  MATH  Google Scholar 

  18. Koga AA, Lopes ECC, Villa Nova HF, De Lima CRD, Silva ECN (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transf 64:759–772

    Article  Google Scholar 

  19. Li H, Ding X, Fz M, Dl J, Xiong M (2019) Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study. Int J Heat Mass Transf 144:1–18

    Article  Google Scholar 

  20. Li H, Pan S, Ding X, Dl J, Xiong M (2019) Experimental and numerical investigation of liquid-cooled heat sinks designed by topology optimization. Int J Therm Sci 146:1–8

    Article  Google Scholar 

  21. McConnell C, Georg P (2012) Multi-layer, pseudo 3D thermal topology optimization of heat sinks. ASME Int Mech Eng Congr Expo Proc (IMECE) 7(D):2381–2392

    Google Scholar 

  22. Haertel JHK, Engelbrecht K, Lazarov BS, Sigmund O (2018) Topology optimization of a pseudo 3D thermofluid heat sink model. Int J Heat Mass Transf 121:1073–1088

    Article  Google Scholar 

  23. Suna Y, Fengwen W, Jun H (2019) Topology optimization of microchannel heat sinks using a two-layer model. Int J Heat Mass Transf 143:1–16

    Google Scholar 

  24. Kays W, Crawford M (1993) Convective heat and mass transfer, 3rd edn. Tata McGraw-Hill Education, New York

    Google Scholar 

  25. Zeng S, Kanargi B, Lee PS (2018) Experimental and numerical investigation of a mini channel forced air heat sink designed by topology optimization. Int J Heat Mass Transf 121:663–679

    Article  Google Scholar 

  26. Alexandersen J, Niels A, Andreasen CS, Sigmund O (2014) Topology optimisation for natural convection problems. Int J Numer Methods Fluids 76(10):699–721

    Article  MathSciNet  Google Scholar 

  27. Lazarov BS, Sigmund O (2010) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang FW, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  29. COMSOL Multiphysics 5.4 Reference Manual

  30. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhao J, Zhang M, Zhu Y, Cheng R, Wang L (2021) Topology optimization of planar cooling channels using a three-layer thermos-fluid model in fully developed laminar flow problems. Struct Multidiscip Optim 63:2789–2809

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Commission under Grant Number 19-163-00-KX-002-016-02; Science and Technology Commission of Sichuan Province under Grant Number 2019YFG0335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaling Fu.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Fu, Y., Yang, X. et al. A pseudo 3D cooling heat sink model designed by multi-objective topology optimization method. Meccanica 57, 2101–2116 (2022). https://doi.org/10.1007/s11012-022-01554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01554-0

Keywords

Navigation