Skip to main content
Log in

Temperature evolution associated with phase transition from quasi static to dynamic loading

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thermo-mechanical coupling is an intrinsic property of first order martensitic transformation. In this paper, we study the temperature evolution during phase transition at a wider strain rates from quasi static to impact loading to reveal the thermodynamic nature of the strain rate effect of phase transition materials. Based on the laws of thermodynamics and the principle of maximum dissipated energy, a thermal-mechanically coupled model was proposed. The model shows that, in the quasi static case, the temperature profile grades around the moving phase boundary, while for the dynamic case, thermal response of the specimen can be reached homogeneously due to random nucleation. The predicted results of the model are in good agreement with the experimental results, suggesting that the interaction between the self-heating effect and the temperature dependence of phase transition behavior plays a leading role in the process of the transformation deformation mechanism associated with the loading rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auricchio F, Sacco E (2001) Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. Int J Solids Struct 38:6123–6145

    Article  MATH  Google Scholar 

  2. Brinson LC, Schmidt I, Lammering R (2004) Stress-induced transformation behavior of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52:1549–1571

    Article  MATH  Google Scholar 

  3. Bouvet C, Calloch S, Lexcellent C (2004) A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur J Mech A Solids 23:37–61

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruno OP, Leo PH, Reitich F (1995) Free boundary conditions at austenite–martensite interfaces. Phys Rev Lett 74:746–749

    Article  Google Scholar 

  5. Chrysochoos A, Licht C, Peyroux R (2003) A one-dimensional thermomechanical modeling of phase change front propagation in a SMA monocrystal. C R Mecanique 331:25–32

    Article  MATH  Google Scholar 

  6. Churchill CB, Shaw JA, Iadicola MA (2010) Tips and tricks for characterizing shape memory alloy wire: part 4-thermo-mechanical coupling. Exp Tech 34:63–80

    Article  Google Scholar 

  7. Chen W, Song B (2006) Temperature dependence of a NiTi shape memory alloy’s superelastic behavior at a high strain rate. J Mech Mater Struct 1(2):329–356

    Article  MathSciNet  Google Scholar 

  8. Entemeyer D, Patoor E, Eberhardt A, Berveiller M (2000) Strain rate sensitivity in superelasticity. Int J Plast 16:1269–1288

    Article  MATH  Google Scholar 

  9. Favier D, Louche H, Schlosser P, Orgéas L, Vacher P, Debove L (2007) Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti-50.8 at.% Ni thin tube under tension. Investigation via temperature and strain fields measurements. Acta Mater 55:5310–5322

    Article  Google Scholar 

  10. Feng P, Sun QP (2006) Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. J Mech Phys Solids 54:1568–1603

    Article  Google Scholar 

  11. Grabe C, Bruhns OT (2008) On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int J Solids Struct 45:1876–1895

    Article  MATH  Google Scholar 

  12. Guo YZ, Ruan QC, Zhu SX et al (2019) Temperature rise associated with adiabatic shear band: causality clarified. Phys Rev Lett 122:015503-1–15505

    Article  Google Scholar 

  13. He YJ, Sun QP (2010) Rate-dependent domain spacing in a stretched NiTi strip. Int J Solids Struct 47:2775–2783

    Article  MATH  Google Scholar 

  14. Huang K, Sun QP, Yu C, Hao Y (2020) Deformation behaviors of gradient nanostructured superelastic NiTi shape memory alloy. Mater Sci Eng A 786:1–5

    Article  Google Scholar 

  15. Iadicola MA, Shaw JA (2004) Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy. Int J Plast 20(4–5):577–605

    Article  MATH  Google Scholar 

  16. Leo PH, Shield TW, Bruno OP (1993) Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall Mater 41:2477–2485

    Article  Google Scholar 

  17. Li ZQ, Sun QP (2002) The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. Int J Plast 18:1481–1498

    Article  Google Scholar 

  18. Li YC (2015) Wave mechanics. University of Science and Technology of China Press

    Google Scholar 

  19. Liu YG, Shen LY, Shan JF (2019) Experimental study on temperature evolution and strain rate effect on phase transformation of TiNi shape memory alloy under shock loading. Int J Mech Sci 156:342–354

    Article  Google Scholar 

  20. Messner C, Werner EA (2003) Temperature distribution due to localised martensitic transformation in SMA tensile test specimens. Comput Mater Sci 26:95–101

    Article  Google Scholar 

  21. Morin C, Moumi Z, Zaki W (2011) Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int J Plast 27:1959–1980

    Article  MATH  Google Scholar 

  22. Miller DA, Thissell WR, Macdougall DAS (2000) Dynamic tensile plasticity and damage evolution in shape memory NiTi. J Phys IV 10:341–346

    Google Scholar 

  23. Nemat-Nasser S, Choi JY, Guo W-G, Isaacs JB (2005) Very high strain-rate response of a NiTi shape-memory alloy. Mech Mater 37(2–3):287–298

    Article  Google Scholar 

  24. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  Google Scholar 

  25. Pieczyska EA, Gadaj V, Nowacki WK, Tobushi H (2006) Phase transformation fronts evolution for stress and strain controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542

    Article  Google Scholar 

  26. Qiu B, Kang Q, Kang G et al (2019) Rate-dependent transformation ratcheting-fatigue interaction of super-elastic NiTi alloy under uniaxial and torsional loadings: experimental observation. Int J Fatig 127:470–478

    Article  Google Scholar 

  27. Shen LY, Liu YG, Hui MM (2020) Dynamic thermo-mechanical behaviors of SME TiNi alloys subjected to shock loading. Acta Mech Sin 36(6):1336–1349

    Article  Google Scholar 

  28. Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43:1243–1281

    Article  Google Scholar 

  29. Shaw JA (2000) Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int J Plast 16:541–562

    Article  MATH  Google Scholar 

  30. Sun QP, Li ZQ (2002) Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation. Int J Solids Struct 39:3797–3809

    Article  Google Scholar 

  31. Sun QP, He YJ (2008) A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. Int J Solids Struct 45:3868–3896

    Article  MATH  Google Scholar 

  32. Tobushi H, Shimeno Y, Hachisuka T, Tanaka K (1998) Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mech Mater 30:141–150

    Article  Google Scholar 

  33. Xu R, Cui L, Zheng Y (2006) The dynamic impact behavior of NiTi alloy. Mater Sci Eng A 438:571–574

    Article  Google Scholar 

  34. Yang SY, Dui GS (2013) Temperature analysis of one-dimensional NiTi shape memory alloys under different loading rates and boundary conditions. Int J Solids Struct 50(20):3254–3265

    Article  Google Scholar 

  35. Yang SY, Dui GS, Ma B (2015) Temperature variation of a NiTi wire considering the effects of test machine grips. Acta Mech 226(8):2573–2580

    Article  MathSciNet  MATH  Google Scholar 

  36. Yao X, Pan Z, Liping L, Yanzhi Z (2017) In situ observation on temperature dependence of martensitic transformation and plastic deformation in superelastic NiTi shape memory alloy. Mater Des 134:111–120

    Article  Google Scholar 

  37. Yang ZL, Wang H, Huang YL et al (2020) Strain rate dependent mechanical response for monoclinic NiTi shape memory alloy: micromechanical decomposition and model validation via neutron diffraction. Mater Des 191:1–15

    Article  Google Scholar 

  38. Yu C, Kang G, Kan Q (2014) Study on the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy based on a new crystal plasticity constitutive model. Int J Solids Struct 51:4386–4405

    Article  Google Scholar 

  39. Yu C, Kang G, Fang D (2019) A micromechanical constitutive model for unusual temperature-dependent deformation of Mg-NiTi composites. Int J Solids Struct 170:38–52

    Article  Google Scholar 

  40. Zhang XH, Feng P, He YJ, Yu TX, Sun QP (2010) Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. Int J Mech Sci 52:1660–1670

    Article  Google Scholar 

  41. Zurbitu J, Castillo G, Urrutibeascoa I, Aurrekoetxea J (2009) Low-engrgy tensile-impact behavior of superelastic NiTi shape memory alloy wires. Mech Mater 41:1050–1058

    Article  Google Scholar 

  42. Zhuo M (2020) Timescale competition dictates thermo-mechanical responses of NiTi shape memory alloy bars. Int J Solids Struct 193–194:601–617

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of China (Grant Number: 11702086), Henan Provincial Natural Science Foundation (Grant Number: NSFRF180422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Thermodynamic basics

The first law of thermodynamics may be written in terms of the Gibbs free energy

$$\dot{G} + \dot{T}\eta + T\dot{\eta } = r - {\text{div}}q - {\dot{\upsigma}} :\upvarepsilon$$
(11)

where q is the heat influx vector and r is the density of internal heat generation. The entropy \(\eta\) of the RVE is given by the following

$$\eta = - \frac{\partial G}{{\partial T}} =\upsigma :\alpha + C\ln (T/T_{0} ) - \eta_{0}$$
(12)

The second principle of thermodynamic or the Clausius–Duhem inequality gives:

$$D = T\dot{\eta } + {\text{div}}q - q\frac{\Delta T}{T} - r \ge 0$$
(13)

where D is the total dissipation.

Eliminating divq − r between Eqs. (11) and (13) gives

$$D = {\dot{\upsigma}} :\upvarepsilon - T\dot{\eta } - \dot{G} - q\frac{\Delta T}{T} \ge 0$$
(14)

Equation (14) emphasizes two dissipation contributions, \(D_{1} = {\dot{\upsigma}} :\upvarepsilon - T\dot{\eta } - \dot{G}\) is the intrinsic dissipation and \(D_{2} = - q\Delta T/T\) is the heat dissipation, which are both positive.

Given the Gibbs free energy G which is written as a function of control and internal variables, and substituting its time derivative into the expression of the intrinsic dissipation lead to:

$$D_{1} = {\dot{\upsigma}} :\upvarepsilon - T\dot{\eta } - \dot{G} = - \frac{\partial G}{{\partial \xi }}\dot{\xi }$$
(15)

From the expression of the intrinsic dissipation, one can write the following equation:

$$D_{1} = - \frac{\partial G}{{\partial \xi }}\dot{\xi } = {\text{div}}q - r + T\dot{\eta }$$
(16)

which leads, by taking into account the time derivative of the entropy, to:

$$D_{1} = - \frac{\partial G}{{\partial \xi }}\dot{\xi } = T\frac{{\partial^{2} }}{\partial T\partial \sigma }:\dot{\sigma } + T\frac{{\partial^{2} }}{\partial T\partial \xi }:\dot{\xi } + T\frac{{\partial^{2} }}{\partial T\partial T}:\dot{T} + {\text{div}}q - r$$
(17)

Heat conduction is taken into account through Fourier’s law,

$${\text{div}}( - k\nabla T) = - \rho C_{P} \dot{T} - \frac{\partial G}{{\partial \xi }}\dot{\xi } - \frac{{\partial^{2} G}}{\partial T\partial \xi }\dot{\xi }T + r$$
(18)

Or in a more condensed form:

$$\rho C_{P} \dot{T} = {\text{div}}(k\nabla T) + (\frac{\partial \eta }{{\partial \xi }}T - \frac{\partial G}{{\partial \xi }})\dot{\xi } + r$$
(19)

Assuming that the macroscopic transformation strain is expressed as the product of the internal variables. It leads to the following expression:

$${\dot{\varepsilon }}_{p} = {\Pi }{\text{sgn}} (\dot{\xi })\dot{\xi }$$
(20)

where sgn is defined as

$${\text{sgn}} (\dot{\xi }) = \left\{ {\begin{array}{*{20}c} 1 & {\dot{\xi } > 0} \\ { - 1} & {\dot{\xi } < 0} \\ \end{array} } \right.$$
(21)

Substituting Eq. (20) into Eq. (19) leads to the following explicit form of expression:

$$\rho C_{P} \dot{T} = {\text{div}}(k\nabla T) + (\frac{\partial \eta }{{\partial \xi }}T - \frac{\partial G}{{\partial \xi }})\frac{{{\dot{\varepsilon }}_{p} }}{{{\Pi }{\text{sgn}} (\dot{\xi })}} + r$$
(22)

The specific Gibbs free energy can be calculated by the rule of mixtures

$$G = \xi G_{M} + (1 - \xi )G_{A} ,\quad \eta = (1 - \xi )\eta_{A} + \xi \eta_{M}$$
(23)

Substituting Eq. (23) in Eq. (22), one can obtain:

$$\rho C_{P} \dot{T} = {\text{div}}(k\nabla T) + [T(\eta_{M} - \eta_{A} ) - (G_{M} - G_{A} )]\frac{{{\dot{\varepsilon }}_{p} }}{{{\Pi }{\text{sgn}} (\dot{\xi })}} + r$$
(24)

It can be seen that the effect of phase transformation deformation energy on the temperature evolution and distribution is not considered in Eq. (24). Therefore, by considering the dissipated energy W, the governing Eq. (24) can be modified as,

$$\rho C_{P} \dot{T} = {\text{div}}(k\nabla T) + [T(\eta_{M} - \eta_{A} ) - (G_{M} - G_{A} )]\frac{{{\dot{\varepsilon }}_{p} }}{{{\Pi }{\text{sgn}} (\dot{\xi })}} + W + r$$
(25)

Appendix 2: Solution of temperature evolution and distribution

The dynamic system of the above equations consists of an unknown temperature field T(x, t) and an unknown interface position S(t), which is mathematically called a free boundary problem. Now, replacing the variables

$$u(x) = T(x + \dot{S}t,t) - T_{0}$$
(26)

then, Eq. (1) is transformed into

$$u_{xx} + \frac{{\rho C_{p} \dot{S}}}{k}u_{x} - \frac{2h}{{Rk}}u = 0$$
(27)

Its solution is

$$u(x) = \left\{ \begin{array}{ll} c_{1} e^{{\lambda_{1} x}} &\quad x > 0 \\ c_{2} e^{{\lambda_{2} x}}&\quad x \le 0 \\ \end{array} \right.$$
(28)

where

$$\lambda_{1,2} = - \frac{{\rho C_{p} v}}{2k} \mp \frac{1}{2}\sqrt {(\frac{{\rho C_{p} v}}{k})^{2} + \frac{8h}{{Rk}}}$$
(29)

In Eq. (26), let x = 0, then

$$u(0) = T(S,t) - T_{0} = T_{{\text{int}}}$$
(30)

Tint reflects the relative temperature at the moving phase interface S(t).

In Eq. (28), let x = 0, then

$$c_{1} = c_{2} = T_{{\text{int}}}$$
(31)

and

$$u(x) = \left\{ {\begin{array}{*{20}l} {T_{{\text{int} }} e^{{\lambda _{1} x}} } \hfill &\quad {x > 0} \hfill \\ {T_{{\text{int} }} e^{{\lambda _{2} x}} } \hfill &\quad {x \le 0} \hfill \\ \end{array} } \right.$$
(32)

Furthermore,

$$T(x,t) = \left\{ {\begin{array}{*{20}l} {T_{{\text{int} }} e^{{\lambda _{1} (x - \dot{S}t)}} + T_{0} } \hfill &\quad {x > \dot{S}t} \hfill \\ {T_{{\text{int} }} e^{{\lambda _{2} (x - \dot{S}t)}} + T_{0} } \hfill &\quad {x \le \dot{S}t} \hfill \\ \end{array} } \right.$$
(33)

By substituting Eq. (33) into phase boundary condition Eq. (5), we can get

$$l^{*} \dot{S} = T_{{\text{int}}} \sqrt {(\rho C_{p} v)^{2} + 8hk/R}$$
(34)

and, the temperature gradient at the interface,

$$T_{{\text{int}}} = \frac{{l^{*} }}{{\rho C_{p} \sqrt {1 + 8\frac{h}{{R\rho C_{p} }} \cdot \frac{k}{{\rho C_{p} }}\frac{1}{{\dot{S}^{2} }}} }}$$
(35)

Substituting Eq. (35) into Eq. (33), we can get

$$T(x,t) = \left\{ {\begin{array}{*{20}l} {T_{0} + \frac{{l^{*} }}{{\sqrt {(\rho C_{p} )^{2} + 8hk/\dot{S}^{2} R} }}e^{{\lambda_{1} (x - \dot{S}t)}} } \hfill & {x > \dot{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{S} }t} \hfill \\ {T_{0} + \frac{{l^{*} }}{{\sqrt {(\rho C_{p} )^{2} + 8hk/\dot{S}^{2} R} }}e^{{\lambda_{2} (x - \dot{S}t)}} } \hfill & {x \le \dot{S}t} \hfill \\ \end{array} } \right.$$
(36)

Equation (36) describes the temperature distribution of the both sides of the moving phase boundary, where \(x > \dot{S}t\) represents the region in front of the phase boundary, and \(x < \dot{s}t\) represents the region behind the phase boundary.

According to the mass conservation condition, the relationship between the propagation velocity and the strain rate of the phase boundary is as follows

$$\dot{S} = \frac{{L_{0} \dot{\varepsilon }}}{\prod }$$
(37)

where Π is the completion strain of the phase transition.

Substituting Eq. (37) into Eqs. (35) and (36), then the temperature distribution across the phase front obeys such rule

$$T(x,t) = \left\{ {\begin{array}{*{20}l} {T_{0} (1 + He^{{\lambda_{1} (x - \dot{S}t)}} )} \hfill & {x > \dot{S}t} \hfill \\ {T_{0} (1 + He^{{\lambda_{2} (x - \dot{S}t)}} )} \hfill & {x \le \dot{S}t} \hfill \\ \end{array} } \right.$$
(38)

where

$$H = \frac{{l^{*} }}{{\rho C_{p} T_{0} \sqrt {1 + 8\frac{h}{{R\rho C_{p} }} \cdot \frac{k}{{\rho C_{p} L_{0}^{2} }} \cdot \left( {\frac{\prod }{{\dot{\varepsilon }}}} \right)^{2} } }}$$
(39)
$$\lambda_{1,2} = - \frac{1}{2}\frac{1}{{L_{0} }}\frac{{\dot{\varepsilon }}}{\prod }\frac{{\rho C_{p} L_{0}^{2} }}{k} \mp \frac{1}{2}\frac{1}{{L_{0} }}\sqrt {\left( {\frac{{\dot{\varepsilon }}}{\prod }\frac{{\rho C_{p} L_{0}^{2} }}{k}} \right)^{2} + \frac{{8hL_{0}^{2} }}{Rk}}$$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hui, M. & Shen, L. Temperature evolution associated with phase transition from quasi static to dynamic loading. Meccanica 56, 2039–2051 (2021). https://doi.org/10.1007/s11012-021-01336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-021-01336-0

Keywords

Navigation