Skip to main content
Log in

Reciprocal gausson phenomena in a Korteweg capillarity system

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In previous work in the literature, a kinetic derivation of a logarithmic nonlinear Schrödinger equation incorporating a de Broglie–Bohm term has been obtained in a capillarity context. Here, gausson-type solutions are constructed for such an NLS model. A novel two-parameter class of reciprocal transformations is shown to leave the 1 + 1-dimensional Korteweg capillarity system invariant and is applied to generate reciprocal gausson solutions. Extension of these results to q-gaussons is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antanovskii LK (1996) Microscale theory of surface tension. Phys Rev E 54:6285–6290

    Article  ADS  Google Scholar 

  2. Korteweg DJ (1901) Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires pas les variations de densité. Arch Néer Sci Exactes Sér II:1–24

    MATH  Google Scholar 

  3. Luke JC (1967) A variational principle for a fluid with a free surface. J Fluid Mech 27:395–397

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Seliger RL, Whitham GB (1968) Variational principles in continuum mechanics. Proc R Soc Lond Ser A 305:1–25

    Article  ADS  MATH  Google Scholar 

  5. Antanovskii LK, Rogers C, Schief WK (1997) A note on a capillarity model and the nonlinear Schrödinger equation. J Phys A Math Gen 30:L555–L557

    Article  ADS  MATH  Google Scholar 

  6. Rogers C, Schief WK (1999) The resonant nonlinear Schrödinger equation via an integrable capillarity model. Il Nuovo Cimento 114B:1409–1412

    ADS  Google Scholar 

  7. Rogers C, Chow KW, Conte R (2007) On a capillarity model and the Davey-Stewartson I system: quasi doubly periodic wave patterns. Il Nuovo Cimento 122B:105–112

    ADS  Google Scholar 

  8. Rogers C, Yip LP, Chow KW (2009) A resonant Davey–Stewartson capillarity model system. Soliton generation. Int J Nonlinear Sci Numer Simul 10:397–405

    Article  Google Scholar 

  9. Rogers C (2014) Integrable substructure in a Korteweg capillarity model. A Kármán–Tsien type constitutive relation. J Nonlinear Math Phys 21:74–88

    Article  MathSciNet  MATH  Google Scholar 

  10. Rogers C, Schief WK (1996) Multi-component Ermakov systems: structure and linearization. J Math Anal Appl 198:194–220

    Article  MathSciNet  MATH  Google Scholar 

  11. Rogers C, An H (2010) Ermakov–Ray–Reid systems in 2 + 1-dimensional rotating shallow water theory. Stud Appl Math 125:275–299

    MathSciNet  MATH  Google Scholar 

  12. Rogers C, Malomed B, Chow KW, An H (2010) Ermakov–Ray–Reid systems in nonlinear optics. J Phys A Math Theor 43:455214

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Rogers C, Schief WK (2011) The pulsrodon in 2 + 1-dimensional magneto-gasdynamics. Hamiltonian structure and integrability. J Math Phys 52:083701

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Rogers C, Malomed B, An H (2012) Ermakov–Ray–Reid reductions of variational approximations in nonlinear optics. Stud Appl Math 129:389–413

    Article  MathSciNet  MATH  Google Scholar 

  15. Bialynicki-Birula I, Mycielski J (1975) Wave equations with logarithmic nonlinearities. Bull Acad Polon Sci Cl 3:461–466

    MathSciNet  Google Scholar 

  16. Bialynicki-Birula I, Mycielski J (1976) Nonlinear wave mechanics. Ann Phys 100:62–93

    Article  ADS  MathSciNet  Google Scholar 

  17. Bialynicki-Birula I, Mycielski J (1978) Gaussons: solitons of the logarithmic Schrödinger equation. Phys Scr 20:539–544

    Article  ADS  MATH  Google Scholar 

  18. Hefter EF (1985) Application of the nonlinear Schrödinger equation with logarithmic inhomogeneous term to nuclear physics. Phys Rev A 32:1201–1204

    Article  ADS  Google Scholar 

  19. Hernandez ES, Renaud B (1980) General properties of gausson-conserving descriptions of quantal damped motion. Phys A 105:130–146

    Article  MathSciNet  Google Scholar 

  20. Krolikowski W, Edmundson D, Bang O (2002) United model for partially coherent solitons in logarithmically nonlinear media. Phys Rev E 61:3122–3126

    Article  ADS  Google Scholar 

  21. Rogers C, An H (2011) On a (2 + 1)-dimensional Madelung system with logarithmic and with Bohm quantum potentials: Ermakov reduction. Phys Scr 84:045004

    Article  ADS  MATH  Google Scholar 

  22. Rogers C (2014) Gausson-type representations in nonlinear physics: Ermakov modulation. Phys Scr 89:105208

    Article  ADS  Google Scholar 

  23. De Martino S, Falanga M, Lauro G, Tzerov SI (2004) Kinetic derivation of the hydrodynamic equations for capillarity fluids. Phys Rev E 70:067301

    Article  ADS  Google Scholar 

  24. Rogers C, Schief WK (2014) The classical Korteweg capillarity system: geometry and invariant transformations. J Phys A Math Theor 47:345201

    Article  MathSciNet  MATH  Google Scholar 

  25. Madelung E (1926) Quantentheorie in hydrodynamischer form. Z Phys 40:322–326

    Article  ADS  MATH  Google Scholar 

  26. Rogers C, Schief WK (2014) On a Boussinesq capillarity system. Hamiltonian reductions and associated quartic geometries. Stud Appl Math 132:1–12

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers C, Schief WK (1998) Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation. Stud Appl Math 100:391–422

    Article  MathSciNet  MATH  Google Scholar 

  28. Rogers C, Shadwick WF (1982) Bäcklund transformations and their applications. Mathematics in sciences and engineering series. Academic Press, New York

    MATH  Google Scholar 

  29. Rogers C, Schief WK (2002) Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Zakharov VE, Shabat PB (1972) Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 34:62–69

    ADS  MathSciNet  Google Scholar 

  31. Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM Studies in Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  32. Pashaev OK, Lee JH (1998) Resonant solitons as black holes in Madelung fluid. Mod Phys Lett A 17:1601–1619

    Article  ADS  MATH  Google Scholar 

  33. Lee JH, Pashaev OK, Rogers C, Schief WK (2007) The resonant nonlinear Schrödinger equation in cold plasma physics: application of Bäcklund–Darboux transformations and superposition principles. J Plasma Phys 73:257–277

    Article  ADS  Google Scholar 

  34. Pashaev OK, Lee JH, Rogers C (2008) Soliton resonances in a generalised nonlinear Schrödinger equation. J Phys A Math Theor 41:452001–452009

    Article  MATH  Google Scholar 

  35. Rogers C, Clarkson PA (2017) Ermakov–Painlevé II symmetry reduction of a Korteweg capillarity system. Symmetry Integrability Geom Methods Appl 13:017

    MATH  Google Scholar 

  36. Rogers C (1968) Reciprocal relations in non-steady one-dimensional gasdynamics. Zeit Angew Math Phys 19:58–63

    Article  MATH  Google Scholar 

  37. Rogers C (1969) Invariant transformations in non-steady gasdynamics and magneto-gasdynamics. Zeit Angew Math Phys 20:370–382

    Article  MATH  Google Scholar 

  38. Rogers C, Baker JA (1982) Invariance properties under a reciprocal Bäcklund transformation in gasdynamics. J Mécanique, Théorique et Appliqueé 1:563–578

    ADS  MathSciNet  MATH  Google Scholar 

  39. Rogers C, Schief SK (2005) Vortex trains in super-Alfvénic magnetogas dynamics application of reciprocal Bäcklund transformations. J Nonlinear Math Phys 12(Suppl 1):548–564

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Donato A, Ramgulam U, Rogers C (1992) The 3 + 1-dimensional Monge–Ampère equation in discontinuity wave theory: application of a reciprocal transformation. Meccanica 27:257–262

    Article  MATH  Google Scholar 

  41. Rogers C, Malomed B (2018) On Madelung systems in nonlinear optics. A reciprocal invariance. J Math Phys 59:051506

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Rogers C (1985) Application of a reciprocal transformation to a two-phase Stefan problem. J Phys A Math Gen 18:L105–L109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rogers C (1986) On a class of moving boundary problems in nonlinear heat conduction. Application of a Bäcklund transformation. Int J Nonlinear Mech 21:249–256

    Article  MATH  Google Scholar 

  44. Rogers C, Broadbridge P (1988) On a nonlinear moving boundary problem with heterogeneity: application of a Bäcklund transformation. Zeit Ang Math Phys 39:122–128

    Article  MATH  Google Scholar 

  45. Fokas AS, Rogers C, Schief WK (2005) Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem. Appl Math Lett 18:321–328

    Article  MathSciNet  MATH  Google Scholar 

  46. Rogers C (2015) On a class of reciprocal Stefan moving boundary problems. Zeit Angew Math Phys 66:2069–2079

    Article  MathSciNet  MATH  Google Scholar 

  47. Rogers C (2015) Moving boundary problems for the Harry Dym equation and its reciprocal associates. Zeit Ang Math Phys 66:3205–3220

    Article  MathSciNet  MATH  Google Scholar 

  48. Rogers C (2019) On Stefan-type moving boundary problems with heterogeneity: canonical reduction via conjugation of reciprocal transformations. Acta Mech 230:839–850

    Article  MathSciNet  Google Scholar 

  49. Rogers C, Wong P (1984) On reciprocal Bäcklund transformations of inverse scattering schemes. Phys Scr 30:10–14

    Article  ADS  MATH  Google Scholar 

  50. Rogers C (1987) The Harry Dym equation in 2 + 1-dimensions: a reciprocal link with the Kadomtsev–Petviashvili equation. Phys Lett 120A:15–18

    Article  ADS  MathSciNet  Google Scholar 

  51. Oevel W, Rogers C (1993) Gauge transformations and reciprocal links in 2 + 1-dimensions. Rev Math Phys 5A:299–330

    Article  MathSciNet  MATH  Google Scholar 

  52. Rogers C, Nucci MC (1986) On reciprocal Bäcklund transformations and the Korteweg–de Vries hierarchy. Phys Scr 33:289–292

    Article  ADS  MATH  Google Scholar 

  53. Rogers C, Carillo S (1987) On reciprocal properties of the Caudrey–Dodd–Gibbon and Kaup–Kuperschmidt hierarchies. Phys Scr 36:865–869

    Article  ADS  MATH  Google Scholar 

  54. Wagner WG, Haus HA, Marburger JH (1968) Large scale self-trapping of optical beams in the paraxial ray approximation. Phys Rev 175:256–266

    Article  ADS  Google Scholar 

  55. Biswas A, Konar S (2006) Introduction to non-Kerr law optical solitons. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  56. Biswas A (2008) 1-soliton solution of 2 + 1-dimensional nonlinear Schrödinger equations in dual power law media. Phys Lett A 372:5941–5943

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Christian JM, McDonald GS, Chamorro-Posada P (2010) Helmholtz solitons in optical materials with dual power law refractive index. J Nonlinear Opt Phys Mater 19:389–405

    Article  ADS  Google Scholar 

  58. Gell-Mann M, Tsallis C (eds) (2004) Non-extensive entropy: interdisciplinary applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  59. Rogers C, Ruggeri T (2014) q-Gaussian integrable Hamiltonian reductions in anisentropic gasdynamics. Discrete Contin Dyn Syst 19:2297–2312

    Article  MathSciNet  MATH  Google Scholar 

  60. Rogers C, Schief WK (2014) On q-Gaussian integrable Hamiltonian reductions in anisentropic magnetogasdynamics. Acta Appl Math 132:515–525

    Article  MathSciNet  MATH  Google Scholar 

  61. Carillo S, Zullo F (2018) Ermakov-Pinney and Ermakov-Fowler equations: new solutions from novel Bäcklund transformations. Theor Math Phys 196:1268–1281

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Rogers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The invariance property

Appendix: The invariance property

$$\begin{aligned} \varDelta =\varDelta ^* \end{aligned}$$

Under the class of reciprocal transformations \(R^*\) given by (27) wherein

$$\begin{aligned} \begin{array}{c} \rho ^*=\dfrac{\rho }{1+\chi \rho }\ , \quad \kappa ^*=(1+\chi \rho )^5\kappa (\rho ) \\ dx^*=(1+\chi \rho )dx-\chi \rho q\ dt\ , \quad t^*=t \end{array} \end{aligned}$$

it is seen that

$$\begin{aligned} \rho ^*_{x^*}= & {} \dfrac{1}{1+\chi \rho }\dfrac{\partial }{\partial x}\left[ \dfrac{\rho }{1+\chi \rho }\right] =\dfrac{\rho _x}{(1+\chi \rho )^3}, \\ \rho ^*_{x^*x^*}= & {} \dfrac{1}{1+\chi \rho }\dfrac{\partial }{\partial x}\left[ \dfrac{\rho _x}{(1+\chi \rho )^3}\right] =\dfrac{1}{1+\chi \rho }\left[ \dfrac{\rho _{xx}}{(1+\chi \rho )^3}-\dfrac{3\chi \rho ^2_x}{(1+\chi \rho )^4}\right] , \end{aligned}$$

together with

$$\begin{aligned} d\kappa ^*/d\rho ^*=(d\kappa ^*/d\rho )(d\rho /d\rho ^*)=[\ 5(1+\chi \rho )^4\chi \kappa (\rho )+(1+\chi \rho )^5\kappa '(\rho )\ ](1+\chi \rho )^2. \end{aligned}$$

Hence,

$$\begin{aligned} \begin{array}{l} \varDelta ^*=\kappa ^*(\rho ^*)\left( \rho ^*_{x^*x^*}-\dfrac{1}{2}\rho ^2_{x^*}\right) +\dfrac{1}{2}\rho ^*(d\kappa ^*/d\rho ^*)\rho ^2_{x^*}\\ \quad \quad =(1+\chi \rho )^5\kappa (\rho )\left[ \dfrac{1}{1+\chi \rho }\left( \dfrac{\rho _{xx}}{(1+\chi \rho )^3}-\dfrac{3\chi \rho ^2_x}{(1+\chi \rho )^4}\right) \dfrac{\rho }{1+\chi \rho }-\dfrac{1}{2}\ \dfrac{\rho ^2_x}{(1+\chi \rho )^6}\right] \\ \quad \quad \quad \quad +\dfrac{1}{2}\ \dfrac{\rho }{1+\chi \rho }[\ 5(1+\chi \rho )^6\kappa (\rho )+(1+\chi \rho )^7\kappa '(\rho )\ ]\dfrac{\rho ^2_x}{(1+\chi \rho )^6} \\ \quad \quad =\kappa (\rho )\left[ \rho _{xx}\rho +\dfrac{\rho ^2_x(-3\chi \rho -\tfrac{1}{2}+\tfrac{5}{2}\rho )}{1+\chi \rho }\right] +\dfrac{1}{2}\rho \kappa '(\rho )\rho ^2_x \\ \quad \quad =\kappa (\rho )\left( \rho _{xx}\rho -\dfrac{1}{2}\rho ^2_x\right) +\dfrac{1}{2}\rho \kappa '(\rho )\rho ^2_x=\varDelta \ . \end{array} \end{aligned}$$

Thus, the invariance property \(\varDelta =\varDelta ^*\) is established.

It is noted, in conclusion, that aspects of another kind of reciprocal transformation allied with Bäcklund transformations have been investigated in connection with the Ermakov equation in [61]. The invariance of classical gasdynamic systems up to the equation of state under certain 4-parameter reciprocal transformations have been shown to constitute Bäcklund transformations in [28].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C. Reciprocal gausson phenomena in a Korteweg capillarity system. Meccanica 54, 1515–1523 (2019). https://doi.org/10.1007/s11012-019-01030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01030-2

Keywords

Mathematics Subject Classification

Navigation