Skip to main content
Log in

Numerical simulations on the dynamics of trains of particles in a viscoelastic fluid flowing in a microchannel

  • Recent advances in modeling and simulations of multiphase flows
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The formation of equally-spaced structures (trains) of rigid, spherical particles suspended in a viscoelastic fluid flowing in a cylindrical microchannel is investigated by numerical simulations. Direct Numerical Simulations (DNS) have been employed to accurately compute the translational velocities of a system made by three particles aligned along a cylindrical channel for different interparticle distances. A shear-thinning, elastic fluid, modeled by the Giesekus costitutive equation, is considered. The DNS results are collected in a database used for simulating the dynamics of a multi-particle system. The evolution of the particle microstructure through the channel is presented in terms of interparticle distance distributions. The effects of the Deborah number (defined as the ratio between the fluid and flow characteristic times), the volume fraction, and the initial particle distribution on the train dynamics are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D’Avino G, Maffettone PL (2015) Particle dynamics in viscoelastic liquids. J Non-Newton Fluid Mech 215:80

    Article  MathSciNet  Google Scholar 

  2. Leshansky AM, Bransky A, Korin N, Dinnar U (2007) Tunable nonlinear viscoelastic focusing in a microfluidic device. Phys Rev Lett 98(23):234501

    Article  ADS  Google Scholar 

  3. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11(2):266

    Article  Google Scholar 

  4. D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single-line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12:1638

    Article  Google Scholar 

  5. D’Avino G, Greco F, Maffettone PL (2017) Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu Rev Fluid Mech 49:341

    Article  ADS  MathSciNet  Google Scholar 

  6. Lu X, Liu C, Hu G, Xuan X (2017) Particle manipulations in non-Newtonian microfluidics: a review. J Colloid Interface Sci 500:182

    Article  ADS  Google Scholar 

  7. Humphry KJ, Kulkarni PM, Weitz DA, Morris JF, Stone HA (2010) Axial and lateral particle ordering in finite Reynolds number channel flows. Phys Fluids 22(8):081703

    Article  ADS  Google Scholar 

  8. Janssen PJA, Baron MD, Anderson PD, Blawzdziewicz J, Loewenberg M, Wajnryb E (2012) Collective dynamics of confined rigid spheres and deformable drops. Soft Matter 8:3495

    Article  Google Scholar 

  9. Bryngelson SH, Freund JB (2018) Global stability of flowing red blood cell trains. Phys Rev Fluids 3(7):073101

    Article  ADS  Google Scholar 

  10. Oakey J, Applegate RW Jr, Arellano E, Di Carlo D, Graves SW, Toner M (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal Chem 82(9):3862

    Article  Google Scholar 

  11. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507(1):11

    Article  Google Scholar 

  12. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249

    Article  Google Scholar 

  13. Kemna EWM, Schoeman RM, Wolbers F, Vermes I, Weitz DA, Van Den Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12(16):2881

    Article  Google Scholar 

  14. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104(48):18892

    Article  ADS  Google Scholar 

  15. Lee W, Amini H, Stone HA, Di Carlo D (2010) Dynamic self-assembly and control of microfluidic particle crystals. Proc Natl Acad Sci 107(52):22413

    Article  ADS  Google Scholar 

  16. Kim JA, Lee J, Wu C, Nam S, Di Carlo D, Lee W (2016) Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions. Lab Chip 16(6):992

    Article  Google Scholar 

  17. D’Avino G, Hulsen MA, Maffettone PL (2013) Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel. Comput Fluids 86:45

    Article  MathSciNet  Google Scholar 

  18. Del Giudice F, D’Avino G, Greco F, Maffettone PL, Shen AQ (2018) Fluid viscoelasticity drives self-assembly of particle trains in a straight microfluidic channel. Phys Rev Appl 10:064058

    Article  ADS  Google Scholar 

  19. Larson RG (1988) Constitutive equations for polymer melts and solutions: Butterworths series in chemical engineering. Butterworth-Heinemann, Oxford

    Google Scholar 

  20. Bogaerds ACB, Hulsen MA, Peters GWM, Baaijens FPT (2004) Stability analysis of injection molding flows. J Rheol 48:765

    Article  ADS  Google Scholar 

  21. Guénette R, Fortin M (1995) A new mixed finite element method for computing viscoelastic flows. J Non-Newton Fluid Mech 60(1):27

    Article  Google Scholar 

  22. Bogaerds ACB, Grillet AM, Peters GWM, Baaijens FPT (2002) Stability analysis of polymer shear flows using the extended pom–pom constitutive equations. J Non-Newton Fluid Mech 108(1):187

    Article  Google Scholar 

  23. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32(1):199

    Article  ADS  MathSciNet  Google Scholar 

  24. Fattal R, Kupferman R (2004) Constitutive laws for the matrix-logarithm of the conformation tensor. J Non-Newtonian Fluid Mech 123:281

    Article  Google Scholar 

  25. Hulsen MA, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J Non-Newton Fluid Mech 127(1):27

    Article  Google Scholar 

  26. Hu HH, Patankar NA, Zhu MY (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique. J Comput Phys 169:427

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano D’Avino.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Avino, G., Maffettone, P.L. Numerical simulations on the dynamics of trains of particles in a viscoelastic fluid flowing in a microchannel. Meccanica 55, 317–330 (2020). https://doi.org/10.1007/s11012-019-00985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-00985-6

Keywords

Navigation