Skip to main content
Log in

Effect of Maxwell stress on a moving crack with polarization saturation region in ferroelectric solid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The focus of this work is on a generalized two-dimensional problem of a crack moving in a piezoelectric solid subjected to uniform electrical load at infinity. The novel point includes that the electric field inside the crack is taken into account when polarization saturation region exists. Based on the extended Stroh formalism and complex function method, explicit expressions of both the stress fields in the solid and electric fields inside the crack are derived by using semi-permeable crack model, respectively. Effect of Maxwell stress along the crack surface is investigated and the results are illustrated graphically. It is shown that the moving speed of the crack cannot exceed the lowest bulk wave speed. It is also found that the medium properties inside the crack and surrounding the ferroelectric solid at infinity directly affect the Maxwell stress, and as a result the Maxwell stresses are remarkable and cannot be ignored under different electric load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rinaldi C, Brenner H (2002) Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective Cauchy stress? Phys Rev E Stat Nonlinear Soft Matter Phys 65(3 Pt 2B):036615

    Article  ADS  MathSciNet  Google Scholar 

  2. Mcmeeking RM (1998) A Maxwell stress for material interactions. J Colloid Interface Sci 199(2):187–196

    Article  ADS  MathSciNet  Google Scholar 

  3. Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47(6):793–802

    Article  Google Scholar 

  4. Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41(22):6291–6315

    Article  MATH  Google Scholar 

  5. Gao CF, Tong P, Zhang TY (2004) Effect of columbic force on piezoelectric fracture. Key Eng Mater 261–263:81–86

    Article  Google Scholar 

  6. Mcmeeking RM, Landis CM (2005) Electrostatic forces and stored energy for deformable dielectric materials. J Appl Mech-T ASME 72(4):581–590

    Article  MATH  Google Scholar 

  7. Ricoeur A, Kuna M (2009) Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics. Int J Fract 157(1–2):3–12

    Article  MATH  Google Scholar 

  8. Ricoeur A, Kuna M (2009) Electrostatic tractions at dielectric interfaces and their implication for crack boundary conditions. Mech Res Commun 36(3):330–335

    Article  MATH  Google Scholar 

  9. Meng LC, Gao CF (2011) Effects of surface electrostatic force on piezoelectric fracture. Int J Theor Appl Multiscale Mech 2(1):46–61

    Article  Google Scholar 

  10. Wang YZ (2014) Effects of Maxwell stress on interfacial crack between two dissimilar piezoelectric solids. J Appl Mech-T ASME 81(10):101003

    Article  Google Scholar 

  11. Zhang AB, Wang BL (2014) The influence of Maxwell stresses on the fracture mechanics of piezoelectric materials. Mech Mater 68(1):64–69

    Article  Google Scholar 

  12. Gao H, Barnett DM (1996) An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture. Int J Fract 79(2):R25–R29

    Article  Google Scholar 

  13. Gao H, Zhang TY, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45(4):491–510

    Article  ADS  Google Scholar 

  14. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  ADS  Google Scholar 

  15. Ru CQ (1999) Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramic. Int J Solids Struct 36(36):869–883

    Article  MATH  Google Scholar 

  16. Fan CY, Zhao MH, Zhou YH (2009) Numerical solution of polarization saturation/dielectric breakdown model in 2D finite piezoelectric media. J Mech Phys Solids 57(9):1527–1544

    Article  ADS  MATH  Google Scholar 

  17. Zhao MH, Guo ZH, Fan CY, Pan E (2013) Electric and magnetic polarization saturation and breakdown models for penny shaped cracks in 3D magnetoelectroelastic media. Int J Solids Struct 50(10):1747–1754

    Article  Google Scholar 

  18. Li PD, Li XY, Kang GZ, Gao CF, Müller R (2017) Crack tip electric polarization saturation of a thermally loaded penny-shaped crack in an infinite thermo-piezo-elastic medium. Int J Solids Struct 117:67–79

    Article  Google Scholar 

  19. Yoffe EH (1951) The moving Griffith crack. Philos Mag 42(330):739–750

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen ZT, Sw YU (1997) Antiplane Yoffe crack problem in piezoelectric materials. Int J Fract 84(3):L41–L45

    Google Scholar 

  21. Gao CF, Zhao YT, Wang MZ (2001) Moving antiplane crack between two dissimilar piezoelectric media. Int J Solids Struct 38(50):9331–9345

    Article  MATH  Google Scholar 

  22. Kwon SM, Lee KY (2002) Yoffe-type moving edge crack in a piezoelectric block. Acta Mech 153(1–2):23–32

    Article  MATH  Google Scholar 

  23. Soh AK, Liu JX, Lee KL, Fang DN (2002) On a moving Griffith crack in anisotropic piezoelectric solids. Arch Appl Mech 72(6–7):458–469

    Article  MATH  Google Scholar 

  24. Matbuly MS (2009) Multiple crack propagation along the interface of a non-homogeneous composite subjected to anti-plane shear loading. Meccanica 44(5):547–554

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen HS, Pei YM, Liu JX, Fang DN (2013) Moving polarization saturation crack in ferroelectric solids. Eur J Mech A-Solid 41(3):43–49

    Article  MathSciNet  Google Scholar 

  26. Xia X, Zhong Z (2015) A mode III moving interfacial crack based on strip magneto-electric polarization saturation model. Smart Mater Struct 24(8):085015

    Article  ADS  Google Scholar 

  27. Tiersten HF (1969) Linear piezoelectric plate vibrations. Plenum Press, New York

    Book  Google Scholar 

  28. Khutoryansky NM, Sosa H (1995) Dynamic representation formulas and fundamental solutions for piezoelectricity. Int J Solids Struct 32(22):3307–3325

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuang Z (2007) Some problems in electrostrictive and magnetostrictive materials. Acta Mech Solida Sin 20(3):219–227

    Article  Google Scholar 

  30. Suo Z, Kuo C, Barnett D, Willis J (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4):739–765

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Wang TC (1999) Analysis of strip electric saturation model of crack problem in piezoelectric materials. Int J Solids Struct 15(3):311–319

    MathSciNet  Google Scholar 

  32. Hooker MW (1998) Properties of PZT-based piezoelectric ceramics between 150 and 250 degrees celcius. NASA Langley technical report server

Download references

Acknowledgements

We thank the National Natural Science Foundation of China for financial support to the Project (11232007, 11472130 and 11272222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunfa Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Shi, Y., Liu, J. et al. Effect of Maxwell stress on a moving crack with polarization saturation region in ferroelectric solid. Meccanica 53, 3037–3045 (2018). https://doi.org/10.1007/s11012-018-0856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0856-9

Keywords

Navigation