Skip to main content
Log in

A non-primitive boundary element technique for modeling flow through non-deformable porous medium using Brinkman equation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this study, we develop a non-primitive boundary integral equation (BIE) method for steady two-dimensional flows of an incompressible Newtonian fluids through porous medium. We assume that the porous medium is isotropic and homogeneous, and use Brinkman equation to model the fluid flow. First, we present BIE method for 2D Brinkman equation in terms of the non-primitive variables namely, stream-function and vorticity variables. Subsequently, a test problem namely, the lid-driven porous cavity over a unit square domain is presented to assert the accuracy of our BEM code. Finally, we discuss an application of our proposed method to flows through porous wavy channel, which is a problem of significant interest in the micro-fluidics, biological domains and groundwater flows. We observe that the rate of convergence (\(R_{c}\)) increases with increasing Darcy number. For low Darcy number streamlines follow the curvature of the wavy-walled channel and no circulation occurs irrespective of the wave–amplitude, while for high Darcy number the flow circulation occurs near the crest of the wavy-walled channel, when the wave–amplitude is large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdelwahed M, Chorfi N, Hassine M (2017) A stabilized finite element method for stream function vorticity formulation of Navier–Stokes equations. Electron J Differ Equ 2017(24):1–10

    MathSciNet  MATH  Google Scholar 

  2. Allan FM, Hamdan M (2002) Fluid mechanics of the interface region between two porous layers. Appl Math Comput 128(1):37–43

    MathSciNet  MATH  Google Scholar 

  3. Anaya V, Mora D, Reales C, Ruiz-Baier R (2017) Mixed methods for a stream-function-vorticity formulation of the axisymmetric Brinkman equations. J Sci Comput 71(1):348–364

    Article  MathSciNet  MATH  Google Scholar 

  4. Aydin M, Fenner R (2001) Boundary element analysis of driven cavity flow for low and moderate reynolds numbers. Int J Numer Methods Fluids 37(1):45–64

    Article  MATH  Google Scholar 

  5. Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4(5):325–331

    Article  Google Scholar 

  6. Burns J, Parkes T (1967) Peristaltic motion. J Fluid Mech 29(04):731–743

    Article  ADS  Google Scholar 

  7. Camp CV, Gipson GS (2013) Boundary element analysis of nonhomogeneous biharmonic phenomena, vol 74. Springer, New York

    MATH  Google Scholar 

  8. Chang Y, Huang LH, Yang FPY (2015) Two-dimensional lift-up problem for a rigid porous bed. Phys Fluids (1994-present) 27(5):053-101

    Article  Google Scholar 

  9. Cheng AD (2000) Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions. Eng Anal Bound Elem 24(7):531–538

    Article  MATH  Google Scholar 

  10. Cheng P (1979) Heat transfer in geothermal systems. Adv Heat Transf 14:1–105

    Article  Google Scholar 

  11. Cheng P (1985) Natural convection in a porous medium: external flows. In: Kakac S, Aung W, Viskanta R (eds) Natural convection: fundamentals and applications. Springer-Verlag, New York, 1181 pp

  12. Chikh S, Boumedien A, Bouhadef K, Lauriat G (1995) Analytical solution of non-Darcian forced convection in an annular duct partially filled with a porous medium. Int J Heat Mass Transf 38(9):1543–1551

    Article  MATH  Google Scholar 

  13. Chow JCF, Soda K, Dean C (1971) On laminar flow in wavy channels. Dev Mech 8:247–260

    Google Scholar 

  14. Croce G, D’Agaro P (2005) Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow. J Phys D Appl Phys 38(10):1518

    Article  ADS  Google Scholar 

  15. Dash R, Mehta K, Jayaraman G (1996) Casson fluid flow in a pipe filled with a homogeneous porous medium. Int J Eng Sci 34(10):1145–1156

    Article  MATH  Google Scholar 

  16. Datta S, Tripathi A (2010) Study of steady viscous flow through a wavy channel: non-orthogonal coordinates. Meccanica 45(6):809–815

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng J, Ganatos P, Weinbaum S (1998) Motion of a sphere near planar confining boundaries in a Brinkman medium. J Fluid Mech 375:265–296

    Article  ADS  MATH  Google Scholar 

  18. Gray DD, Ogretim E, Bromhal GS (2013) Darcy flow in a wavy channel filled with a porous medium. Transp Porous Med 98(3):743–753

    Article  Google Scholar 

  19. Hamdan M, Barron R (1989) Shear-driven flow in a porous cavity. J Fluids Eng 111(4):433–438

    Article  Google Scholar 

  20. Huang H-M, Lin M-Y, Huang L-H (2010) Lifting of a large object from a rigid porous seabed. J Hydrodyn Ser B 22(5):106–113

    Article  MathSciNet  Google Scholar 

  21. Ingham D (2002) The solution of the two-dimensional Stokes equations. In: Brebbia CA, Tadeu A, Popov V (eds) Boundary elements XXIV. WIT Press, Southampton, pp 671–678

  22. Karmakar T, Raja Sekhar GP (2016) Lifting a large object from an anisotropic porous bed. Phys Fluids 28(9):093,601

    Article  Google Scholar 

  23. Karmakar T, Raja Sekhar GP (2017) Effect of anisotropic permeability on convective flow through a porous tube with viscous dissipation effect. J Eng Math 1–23. https://doi.org/10.1007/s10665-017-9926-6

  24. Karmakar T, Raja Sekhar GP (2017) A note on flow reversal in a wavy channel filled with anisotropic porous material. Proc R Soc A 473:20170193

    Article  ADS  MathSciNet  Google Scholar 

  25. Katsikadelis JT (2002) Boundary elements: theory and applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  26. Kaviany M (1985) Laminar flow through a porous channel bounded by isothermal parallel plates. Int J Heat Mass Transf 28(4):851–858

    Article  Google Scholar 

  27. Kaviany M (2012) Principles of heat transfer in porous media. Springer, New York

    MATH  Google Scholar 

  28. Kelmanson M (1983) An integral equation method for the solution of singular slow flow problems. J Comput Phys 51(1):139–158

    Article  ADS  MATH  Google Scholar 

  29. Khaled AR, Vafai K (2003) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46(26):4989–5003

    Article  MATH  Google Scholar 

  30. Lackner KS (2009) Capture of carbon dioxide from ambient air. Eur Phys J Spec Top 176(1):93–106

    Article  Google Scholar 

  31. Lee B, Kang I, Lim H (1999) Chaotic mixing and mass transfer enhancement bypulsatile laminar flow in an axisymmetric wavy channel. Int J Heat Mass Transf 42(14):2571–2581

    Article  MATH  Google Scholar 

  32. Lee WK, Taylor P, Borthwick AG, Chuenkhum S (2010) Vortex-induced chaotic mixing in wavy channels. J Fluid Mech 654:501–538

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Newmark RL, Friedmann SJ, Carroll SA (2010) Water challenges for geologic carbon capture and sequestration. Environ Manag 45(4):651–661

    Article  ADS  Google Scholar 

  34. Ng CO, Wang C (2010) Darcy–Brinkman flow through a corrugated channel. Transp Porous Med 85(2):605–618

    Article  MathSciNet  Google Scholar 

  35. Nichele J, Teixeira DA (2015) Evaluation of Darcy–Brinkman equation for simulations of oil flows in rocks. J Pet Sci Eng 134:76–78

    Article  Google Scholar 

  36. Nield DA, Bejan A (2006) Convection in porous media. Springer, New York

    MATH  Google Scholar 

  37. Nishad CS, Chandra A, Raja Sekhar GP (2016) Flows in slip-patterned micro-channels using boundary element methods. Eng Anal Bound Elem 73:95–102

    Article  MathSciNet  Google Scholar 

  38. Nishad CS, Chandra A, Raja Sekhar GP (2017) Stokes flow inside topographically patterned microchannel using boundary element method. Int J Chem React Eng 15(5). https://doi.org/10.1515/ijcre-2017-0057

  39. Nishimura T, Ohori Y, Kawamura Y (1984) Flow characteristics in a channel with symmetric wavy wall for steady flow. J Chem Eng Jpn 17(5):466–471

    Article  Google Scholar 

  40. Patiño ID, Power H, Nieto-Londoño C, Flórez WF (2017) Stokes–Brinkman formulation for prediction of void formation in dual-scale fibrous reinforcements: a BEM/DR-BEM simulation. Comput Mech 59(4):555–577

  41. Pozrikidis C (1987) Creeping flow in two-dimensional channels. J Fluid Mech 180:495–514

    Article  ADS  Google Scholar 

  42. Pozrikidis C (1989) A study of linearized oscillatory flow past particles by the boundary-integral method. J Fluid Mech 202:17–41

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Selvarajan S, Tulapurkara E, Ram VV (1998) A numerical study of flow through wavy-walled channels. Int J Numer Meth Fluids 26:519–531

    Article  MATH  Google Scholar 

  44. Singh J, Glière A, Achard JL (2012) A novel non-primitive boundary integral equation method for three-dimensional and axisymmetric Stokes flows. Meccanica 47(8):2013–2026

    Article  MathSciNet  MATH  Google Scholar 

  45. Sobey IJ (1980) On flow through furrowed channels. Part 1. Calculated flow patterns. J Fluid Mech 96(1):1–26

    Article  ADS  MATH  Google Scholar 

  46. Tada S, Tarbell JM (2000) Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 278(5):H1589–H1597

    Article  Google Scholar 

  47. Tezduyar T, Liou J, Ganjoo D (1990) Incompressible flow computations based on the vorticity–stream function and velocity–pressure formulations. Comput Struct 35(4):445–472

    Article  ADS  MATH  Google Scholar 

  48. Vafai K, Thiyagaraja R (1987) Analysis of flow and heat transfer at the interface region of a porous medium. Int J Heat Mass Transf 30(7):1391–1405

    Article  MATH  Google Scholar 

  49. Wang CY (1976) Parallel flow between corrugated plates. J Eng Mech 102(06):1088–1090

    Google Scholar 

  50. Wang CY (1979) On Stokes flow between corrugated plates. J Appl Mech 46(2):462–464

    Article  MATH  Google Scholar 

  51. Wang W, Rutqvist J, Görke UJ, Birkholzer JT, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approaches. Environ Earth Sci 62(6):1197–1207

    Article  Google Scholar 

  52. Wei H, Waters S, Liu S, Grotberg J (2003) Flow in a wavy-walled channel lined with a poroelastic layer. J Fluid Mech 492:23–45

    Article  ADS  MATH  Google Scholar 

  53. Yu L, Wang C (2013) Darcy–Brinkman flow through a bumpy channel. Transp Porous Med 97(3):281–294

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors Chandra Shekhar Nishad and Timir Karmakar are grateful for the financial support from Indian Institute of Technology Kharagpur, India. Authors acknowledge the referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Raja Sekhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishad, C.S., Chandra, A., Karmakar, T. et al. A non-primitive boundary element technique for modeling flow through non-deformable porous medium using Brinkman equation. Meccanica 53, 2333–2352 (2018). https://doi.org/10.1007/s11012-018-0832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0832-4

Keywords

Navigation