Skip to main content
Log in

Buckling and post-buckling of arbitrary shells under thermo-mechanical loading

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thermo-mechanical buckling and post-buckling analysis of arbitrary, smooth and folded shells with different boundary conditions are investigated. A pure displacement-and-theory-based isoparametric curved triangular shell element is introduced. This element is neither hybrid-mixed nor degenerated. Nevertheless, it is free from locking problem. The new element has six nodes while each node has three translational and three rotational (including the drilling) degrees of freedom. Large displacements and rotations are considered by employment of Total-Lagrangian scheme and Euler–Rodrigues formulation. The first-order shear deformation theory is used, and the proposed element is capable of modeling thin to thick shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Director vector

\(\bar{b}\) :

Body force vector per unit reference volume

D αβ :

Stress–strain tensors

d :

Global deformations vector of element

E :

Module of elasticity

e i :

Orthogonal unit vectors

F :

Deformation gradient tensor

G α :

Geometric tensors

h :

Thickness

I :

Identity tensor

J :

Jacobian

k α :

Curvature vectors

k G :

Element global tangent stiffness matrix

m α :

Moment cross-sectional per unit length vectors

\(\bar{m}\) :

External moments per unit reference area

N :

Interpolation function matrix

n :

Shape function vector

n α :

Force cross-sectional per unit length vectors

\(\bar{n}\) :

External forces per unit reference area

O :

Zero tensor

o :

Zero vector

P :

First Piola–Kirchhoff stress tensor

P G :

Element global secant residual force vector

P ext :

External power

P int :

Internal power

p :

Pressure magnitude

p G :

Global deformations vector of nodes

Q :

Rotation tensor

\(\bar{q}\) :

Generalized external forces vector

r :

Effective rotation angle

T :

Cauchy stress tensor

\(\bar{t}\) :

Surface traction vector per unit reference area

u :

Global effective displacements vector

W ext :

External virtual work

W int :

Internal virtual work

x :

Position vector

z :

Mapping vector

α :

Thermal expansion coefficient

γ α :

Strain vectors

ΔT :

Temperature change

ε α :

Strain vectors corresponding to stress-resultant vectors

\(\zeta\) :

Thickness coordinate

η α :

Membrane strain vectors

Θ:

Global effective angles tensor

θ :

Global effective angles vector

ν :

Poisson’s ratio

ξ α :

Surface coordinates

σ α :

Stress-resultant vectors

τ α :

Stress vectors

Ψα :

Strain–displacement tensors

Ω:

Spin tensor

ω :

Spin vector

References

  1. Simitses GJ (1986) Buckling and postbuckling of imperfect cylindrical shells: a review. Appl Mech Rev 39:1517–1524

    Article  ADS  Google Scholar 

  2. Teng JG (1996) Buckling of thin shells: recent advances and trends. Appl Mech Rev 49:263–274

    Article  ADS  Google Scholar 

  3. Mackerle J (2002) Finite element linear and nonlinear, static and dynamic analysis of structural elements, an addendum: a bibliography. Eng Comput 19:520–594

    Article  MATH  Google Scholar 

  4. Brendel B, Ramm E (1980) Linear and nonlinear stability analysis of cylindrical shells. Comput Struct 12:549–558

    Article  MATH  Google Scholar 

  5. Abdelmoula R, Damil N, Potier-Ferry M (1992) Influence of distributed and localized imperfections on the buckling of cylindrical shells under external pressure. Int J Solids Struct 29:1–25

    Article  MATH  Google Scholar 

  6. Teng JG, Hong T (1998) Nonlinear thin shell theories for numerical buckling predictions. Thin-walled Struct 31:89–115

    Article  Google Scholar 

  7. Huang NN, Tauchert TR (1991) Large deflections of laminated cylindrical and doubly-curved panels under thermal loading. Comput Struct 41:303–312

    Article  MATH  Google Scholar 

  8. Noor AK, Peters JM (1999) Analysis of composite panels subjected to thermo-mechanical loads. J Aerosp Eng 12:1–7

    Article  Google Scholar 

  9. Librescu L, Nemeth MP, Starnes JH Jr, Lin W (2000) Nonlinear response of flat and curved panels subjected to thermomechanical loads. J Therm Stress 23:549–582

    Article  Google Scholar 

  10. Eslami MR, Shahsiah R (2001) Thermal buckling of imperfect cylindrical shells. J Therm Stress 24:71–89

    Article  Google Scholar 

  11. Eslami MR, Ghorbani HR, Shakeri M (2001) Thermoelastic buckling of thin spherical shells. J Therm Stress 24:1177–1198

    Article  Google Scholar 

  12. Li QS, Liu J, Tang J (2003) Buckling of shallow spherical shells including the effects of transverse shear deformation. Int J Mech Sci 45:1519–1529

    Article  MATH  Google Scholar 

  13. Ganesan N, Kadoli R (2004) Studies on linear thermoelastic buckling and free vibration analysis of geometrically perfect hemispherical shells with cut-out. J Sound Vib 277:855–879

    Article  ADS  Google Scholar 

  14. Singha MK, Ramachandra LS, Bandyopadhyay JN (2006) Nonlinear response of laminated cylindrical shell panels subjected to thermomechanical loads. J Eng Mech 132:1088–1095

    Article  Google Scholar 

  15. Hong CC (2009) Thermal bending analysis of shear-deformable laminated anisotropic plate by the GDQ method. Mech Res Commun 36:804–810

    Article  MATH  Google Scholar 

  16. Gupta NK, Mohamed Sheriff N, Velmurugan R (2006) A study on buckling of thin conical frusta under axial loads. Thin-walled Struct 44:986–996

    Article  Google Scholar 

  17. Jasion P (2009) Stability analysis of shells of revolution under pressure conditions. Thin-walled Struct 47:311–317

    Article  Google Scholar 

  18. Xu F, Koutsawa Y, Potier-Ferry M, Belouettar S (2015) Instabilities in thin films on hyperelastic substrates by 3D finite elements. Int J Solids Struct 69:71–85

    Article  Google Scholar 

  19. Zhang J, Zhang M, Tang W, Wang W, Wang M (2017) Buckling of spherical shells subjected to external pressure: a comparison of experimental and theoretical data. Thin-walled Struct 111:58–64

    Article  Google Scholar 

  20. Alijani A, Darvizeh M, Darvizeh A, Ansari R (2015) On nonlinear thermal buckling analysis of cylindrical shells. Thin-walled Struct 95:170–182

    Article  Google Scholar 

  21. Khazaeinejad P, Usmani AS (2016) On thermo-mechanical nonlinear behavior of shallow shells. Int J Nonlinear Mech 82:114–123

    Article  Google Scholar 

  22. Wang ZW, Han QF, Nash DH, Liu PQ (2017) Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell. Thin-walled Struct 119:438–446

    Article  Google Scholar 

  23. Xu F, Abdelmoula R, Potier-Ferry M (2017) On the buckling and post-buckling of core-shell cylinders under thermal loading. Int J Solids Struct 126:17–36

    Article  Google Scholar 

  24. Li C, Miao Y, Wang H, Feng Q (2017) Thermal buckling of thin spherical shells under uniform external pressure and nonlinear temperature. Thin-walled Struct 119:782–794

    Article  Google Scholar 

  25. Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: a geometrically exact finite element approach. Int J Numer Methods Eng 78:1094–1112

    Article  MathSciNet  MATH  Google Scholar 

  26. Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518

    Article  MATH  Google Scholar 

  27. Rezaiee-Pajand M, Arabi E, Masoodi AR (2017) A triangular shell element for geometrically nonlinear analysis. Acta Mech 229:323–342

    Article  MathSciNet  MATH  Google Scholar 

  28. Rezaiee-Pajand M, Arabi E (2016) A curved triangular element for nonlinear analysis of laminated shells. Compos Struct 153:538–548

    Article  Google Scholar 

  29. Felippa CA, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194:2285–2335

    Article  ADS  MATH  Google Scholar 

  30. Caselli F, Bisegna P (2013) Polar decomposition based corotational framework for triangular shell elements with distributed loads. Int J Numer Methods Eng 95:499–528

    Article  MathSciNet  MATH  Google Scholar 

  31. Bisegna P, Caruso G, Caselli F, Nodargi N (2017) A corotational triangular facet shell element for geometrically nonlinear analysis of thin piezoactuated structures. Compos Struct 172:267–281

    Article  Google Scholar 

  32. Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32:85–155

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Sansour C, Bufler H (1992) An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation. Int J Numer Methods Eng 34:73–115

    Article  MathSciNet  MATH  Google Scholar 

  34. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model, part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech 79:21–70

    Article  MathSciNet  MATH  Google Scholar 

  35. Ibrahimbegović A (1997) Stress resultant geometrically exact theory for finite rotations and its finite element implementation. Appl Mech Rev 50:199–226

    Article  ADS  Google Scholar 

  36. Chroscielewski J, Makowski J, Stumpf H (1992) Genuinly resultant shell finite elememts for geometric and material nonlinearity. Int J Numer Methods Eng 35:63–94

    Article  MATH  Google Scholar 

  37. Tang YQ, Zhou ZH, Chan SL (2016) Geometrically nonlinear analysis of shells by quadrilateral flat shell element with drill, shear, and warping. Int J Numer Methods Eng 108:1248–1272

    Article  MathSciNet  Google Scholar 

  38. Masoodi AR, Arabi E (2018) Geometrically nonlinear thermomechanical analysis of shell-like structures. J Therm Stress 41:37–53

    Article  Google Scholar 

  39. Leon SE, Paulino GH, Pereira A, Menezes IFM, Lages EN (2012) A unified Library of nonlinear solution schemes. Appl Mech Rev 64:1–26

    Google Scholar 

Download references

Acknowledgements

We hereby acknowledge that parts of these computations were performed on the High-Performance Computing (HPC) center of Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezaiee-Pajand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The algorithm of the Generalaized Displacement Control Method for each iteration j of the increment i can be summarized as below:

  1. 1.

    Compute the tangent stiffness matrix \(K_{j}^{i}.\)

  2. 2.

    Compute internal force \(P_{int}^{i}.\)

  3. 3.

    Obtain residual load using \(R_{j}^{i} = \bar{P}^{i} - P_{int}^{i}.\)

  4. 4.

    Obtain \(\delta u_{pj}^{i}.\) using \(\delta u_{pj}^{i} = (K_{j}^{i} )^{ - 1} P_{ext}.\)

  5. 5.

    Obtain \(\delta u_{rj}^{i}.\) using \(\delta u_{rj}^{i} = (K_{j}^{i} )^{ - 1} R_{j}^{i}.\)

  6. 6.

    Obtain \(\delta \lambda_{j}^{i}.\) according to \(\delta \lambda_{j}^{i} = - \frac{{\delta u_{p1}^{i - 1} .\,\,\delta u_{rj}^{i} }}{{\delta u_{p1}^{i - 1} .\,\delta u_{pj}^{i} \,}} .\)

  7. 7.

    Update load factor as \(\lambda^{i} = \lambda^{i} + \delta \lambda_{j}^{i}.\)

  8. 8.

    Update load vector as \(\bar{P}^{i} = \bar{P}^{i} + \delta \lambda_{j}^{i} P_{ext}.\)

  9. 9.

    Update displacements as \(u^{i} = u^{i} + \delta \lambda_{j}^{i} \delta u_{pj}^{i} + \delta u_{rj}^{i}.\)

  10. 10.

    If convergence is achieved, then

  11. 11.

    Next increment \(i = i + 1.\)

  12. 12.

    Else

  13. 13.

    Next iteration \(j = j + 1.\)

  14. 14.

    End if.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaiee-Pajand, M., Pourhekmat, D. & Arabi, E. Buckling and post-buckling of arbitrary shells under thermo-mechanical loading. Meccanica 54, 205–221 (2019). https://doi.org/10.1007/s11012-018-00928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-00928-7

Keywords

Navigation