Skip to main content
Log in

Stress analysis in rolling contact problem of a finite thickness FGM layer

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The rolling contact problem of a non-homogeneous layer is considered here. The graded layer possesses a variable elastic modulus with an exponential distribution. The Poisons ratio is assumed to be constant. A rigid cylindrical indenter is rolling over the surface of the graded layer with a constant velocity. First, the Navier equations of equilibrium are solved in the Fourier domain. Later, the boundary and the continuity conditions are satisfied in order to extract the governing singular integral equations. The numerical solution of the integral equations is provided by means of the Gauss–Chebyshev integration method. Finally, the sensitivity of the solution is analyzed for the effective parameters namely: the stiffness ratio, the layer thickness and the coefficient of friction. The results indicate that a minimum value of the coating thickness is required to alleviate the severe stress gradients in the critical locations. If the coating thickness decreases by a 50% then the Von Mises stress will increases about 20%. Also, a softening graded layer can result in a lower stress level over the interface which may enhance the bonding strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee WY, Stinton DP, Berndt CC, Erdogan F, Lee YD, Mutasim Z (1996) Concept of functionally graded materials for advanced thermal barrier coating applications. J Am Ceram Soc 79(12):3003

    Article  Google Scholar 

  2. Thivillon L, Bertrand P, Laget B, Smurov I (2009) Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components. J Nucl Mater 385(2):236

    Article  ADS  Google Scholar 

  3. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: International association of engineers (IAENG)

  4. Bandyopadhyay A, Krishna B, Xue W, Bose S (2009) Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants. J Mater Sci Mater Med 20(1):29

    Article  Google Scholar 

  5. Bakirtas I (1980) The problem of a rigid punch on a non-homogeneous elastic half space. Int J Eng Sci 18(4):597

    Article  MATH  Google Scholar 

  6. Bakirtaş İ (1984) The contact problem of an orthotropic non-homogeneous elastic half space. Int J Eng Sci 22(4):347

    Article  MATH  Google Scholar 

  7. Jitcharoen J, Padture NP, Giannakopoulos AE, Suresh S (1998) Hertzian-crack suppression in ceramics with elastic-modulus-graded surfaces. J Am Ceram Soc 81(9):2301

    Article  Google Scholar 

  8. Guler M, Erdogan F (1998) Contact mechanics of FGM coatings. In: Proceedings of 8th Japan—US conference on composite materials, pp 397–408

  9. Dag S, Erdogan F (2002) A surface crack in a graded medium loaded by a sliding rigid stamp. Eng Fract Mech 69(14–16):1729

    Article  Google Scholar 

  10. El-Borgi S, Keer L, Said WB (2004) An embedded crack in a functionally graded coating bonded to a homogeneous substrate under frictional Hertzian contact. Wear 257(7–8):760

    Article  Google Scholar 

  11. Ke LL, Wang YS (2006) Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int J Solids Struct 43(18–19):5779

    Article  MATH  Google Scholar 

  12. Yang J, Ke LL (2008) Two-dimensional contact problem for a coating-graded layer-substrate structure under a rigid cylindrical punch. Int J Mech Sci 50(6):985

    Article  MathSciNet  MATH  Google Scholar 

  13. Guler MA, Adibnazari S, Alinia Y (2012) Tractive rolling contact mechanics of graded coatings. Int J Solids Struct 49(6):929

    Article  Google Scholar 

  14. Guler M, Alinia Y, Adibnazari S (2012) On the rolling contact problem of two elastic solids with graded coatings. Int J Mech Sci 64(1):62

    Article  Google Scholar 

  15. Liu TJ, Wang YS, Xing YM (2012) The axisymmetric partial slip contact problem of a graded coating. Meccanica 47(7):1673

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen P, Chen S (2013) Partial slip contact between a rigid punch with an arbitrary tip-shape and an elastic graded solid with a finite thickness. Mech Mater 59:24

    Article  Google Scholar 

  17. Chen P, Chen S (2013) Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int J Solids Struct 50(7–8):1108

    Article  Google Scholar 

  18. Çömez İ (2015) Contact problem for a functionally graded layer indented by a moving punch. Int J Mech Sci 100:339

    Article  Google Scholar 

  19. Alinia Y, Beheshti A, Guler MA, El-Borgi S, Polycarpou AA (2016) Sliding contact analysis of functionally graded coating/substrate system. Mech Mater 94:142

    Article  Google Scholar 

  20. El-Borgi S, Çömez I (2017) A receding frictional contact problem between a graded layer and a homogeneous substrate pressed by a rigid punch. Mech Mater 114:201

    Article  Google Scholar 

  21. Su J, Ke LL, El-Borgi S, Xiang Y, Wang YS (2018) An effective method for the sliding frictional contact of a conducting cylindrical punch on FGPMs. Int J Solids Struct 141:127

    Article  Google Scholar 

  22. Thai CH, Zenkour A, Wahab MA, Nguyen-Xuan H (2016) A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Composite Struct 139:77

    Article  Google Scholar 

  23. Liu N, Jeffers AE (2017) Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Composite Struct 176:143

    Article  Google Scholar 

  24. Hills D, Nowell D, Sackfield A (2013) Mechanics of elastic contacts. Elsevier, Amsterdam

    MATH  Google Scholar 

  25. Guler M (1996) The problem of a rigid punch with friction on a graded elastic medium. Master’s thesis, Lehigh University, Bethlehem

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadolah Alinia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix 1: The integrand function of the Fredholm kernels

Appendix 1: The integrand function of the Fredholm kernels

The integrand functions introduced in Eqs.18 and 20 are given as:

$$\begin{aligned} {{h}_{31}}\left( \alpha ,y \right)&= \frac{i\alpha }{({{r}_{6}}{{{\bar{r}}}_{8}}+{{{\bar{r}}}_{6}}{{r}_{8}})}\left( {{r}_{8}}{{{\bar{y}}}_{3}}+{{{\bar{r}}}_{8}}{{y}_{3}} \right) \end{aligned}$$
(49a)
$$\begin{aligned} {{h}_{32}}\left( \alpha ,y \right)&= \frac{i\alpha }{({{r}_{6}}{{{\bar{r}}}_{8}}+{{{\bar{r}}}_{6}}{{r}_{8}})}\left( {{{\bar{r}}}_{6}}{{y}_{3}}-{{r}_{6}}{{{\bar{y}}}_{3}} \right) \end{aligned}$$
(49b)
$$\begin{aligned} {{h}_{41}}\left( \alpha ,y \right)&= \frac{i\alpha }{({{r}_{6}}{{{\bar{r}}}_{8}}+{{{\bar{r}}}_{6}}{{r}_{8}})}\left( {{{\bar{r}}}_{6}}{{y}_{4}}+{{r}_{6}}{{{\bar{y}}}_{4}} \right) \end{aligned}$$
(49c)
$$\begin{aligned} {{h}_{42}}\left( \alpha ,y \right)&= -\frac{i\alpha }{({{r}_{6}}{{{\bar{r}}}_{8}}+{{{\bar{r}}}_{6}}{{r}_{8}})}\left( {{r}_{8}}\bar{y}{}_{4}-{{{\bar{r}}}_{8}}{{y}_{4}} \right) \end{aligned}$$
(49d)
$$\begin{aligned} {{\Phi }_{31}}\left( \alpha \right)&= \frac{\alpha }{{{\Delta }_{5}}}\left( {{y}_{3}}{{{\bar{r}}}_{8}}+{{{\bar{y}}}_{3}}{{r}_{8}} \right) -\frac{\kappa +1}{4} \end{aligned}$$
(50a)
$$\begin{aligned} {{\Phi }_{32}}\left( \alpha \right)&= \frac{i\alpha }{{{\Delta }_{5}}}\left( {{y}_{3}}{{{\bar{r}}}_{8}}-{{{\bar{y}}}_{3}}{{r}_{6}} \right) +\frac{\kappa -1}{4} \end{aligned}$$
(50b)
$$\begin{aligned} {{\Phi }_{41}}\left( \alpha \right)&= -\frac{\alpha }{{{\Delta }_{5}}}\left( {{y}_{4}}{{{\bar{r}}}_{6}}+{{{\bar{y}}}_{4}}{{r}_{6}} \right) -\frac{\kappa +1}{4} \end{aligned}$$
(50c)
$$\begin{aligned} {{\Phi }_{42}}\left( \alpha \right)&= -\frac{i\alpha }{{{\Delta }_{5}}}\left( {{{\bar{y}}}_{4}}{{r}_{6}}-{{y}_{4}}{{{\bar{r}}}_{8}} \right) -\frac{\kappa +1}{4} \end{aligned}$$
(50d)

here

$$\begin{aligned} {{y}_{3}}&= {{e}^{\left( h+y \right) {{n}_{5}}}}+{{e}^{\left( h+y \right) {{n}_{6}}}}{{r}_{5}}+{{e}^{\left( h+y \right) {{{\bar{n}}}_{6}}}}{{r}_{7}} \end{aligned}$$
(51a)
$$\begin{aligned} {{y}_{4}}&= {{e}^{\left( h+y \right) {{n}_{5}}}}{{a}_{5}}+{{e}^{\left( h+y \right) {{n}_{6}}}}{{a}_{6}}{{r}_{5}}-{{e}^{\left( h+y \right) {{{\bar{n}}}_{6}}}}{{r}_{7}}{{\bar{a}}_{6}} \end{aligned}$$
(51b)
$$\begin{aligned} {{r}_{6}}&= {{z}_{55}}+{{z}_{56}}{{r}_{5}}{{e}^{-h({{n}_{5}}-{{n}_{6}})}}+{{\bar{z}}_{56}}{{r}_{7}}{{e}^{-h({{n}_{5}}-{{{\bar{n}}}_{6}})}} \end{aligned}$$
(52a)
$$\begin{aligned} {{r}_{8}}&= {{z}_{65}}+{{z}_{66}}{{r}_{5}}{{e}^{-h({{n}_{5}}-{{n}_{6}})}}+{{\bar{z}}_{66}}{{r}_{7}}{{e}^{-h({{n}_{5}}-{{{\bar{n}}}_{6}})}} \end{aligned}$$
(52b)

and:

$$\begin{aligned} {{z}_{55}}&= -i\alpha {{a}_{5}}\left( -3+\kappa \right) +{{n}_{5}}\left( 1+\kappa \right) \end{aligned}$$
(53a)
$$\begin{aligned} {{z}_{56}}&= -i\alpha {{a}_{6}}\left( -3+\kappa \right) +{{n}_{6}}\left( 1+\kappa \right) \end{aligned}$$
(53b)
$$\begin{aligned} {{z}_{65}}&= i\alpha +{{a}_{5}}{{n}_{5}} \end{aligned}$$
(53c)
$$\begin{aligned} {{z}_{66}}&= i\alpha +{{a}_{6}}{{n}_{6}} \end{aligned}$$
(53d)

In all mentioned equations, the symbol “ \(\bar{}\) ” stands for the complex conjugate of the corresponding variable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alinia, Y., Asiaee, A. & Hosseini-nasab, M. Stress analysis in rolling contact problem of a finite thickness FGM layer. Meccanica 54, 183–203 (2019). https://doi.org/10.1007/s11012-018-00925-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-00925-w

Keywords

Navigation