Skip to main content
Log in

Exact analysis of heat convection of viscoelastic FENE-P fluids through isothermal slits and tubes

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this article, two exact analytical solutions for heat convection in viscoelastic fluid flow through isothermal tubes and slits are presented for the first time. Herein, a Peterlin type of finitely extensible nonlinear elastic (FENE-P) model is used as the nonlinear constitutive equation for the viscoelastic fluid. Due to the eigenvalue form of the heat transfer equation, the modal analysis technique has been used to determine the physical temperature distributions. The closed form solution for the temperature profile is obtained in terms of a Heun Tri-confluent function for slit flow and then the Frobenius method is used to evaluate the temperature distribution for the tube flow. Based on these solutions, the effects of extensibility parameter and Deborah number on thermal convection in FENE-P fluid flow have been studied in detail. The fractional correlations for reduced Nusselt number in terms of material modulus are also derived. Here, it is shown that by increasing the Deborah number from 0 to 100, the Nusselt number is enhanced by 8.5 and 13.5% for slit and tube flow, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shah R (1975) Laminar flow friction and forced convection heat transfer in ducts of arbitrary geometry. Int J Heat Mass Transf 18:849–862

    Article  MATH  Google Scholar 

  2. Shah R, London A (1978) Laminar flow forced convection in ducts. Academic Press, New York

    Google Scholar 

  3. Bejan A (1995) Convection heat transfer. 2nd edn. Wiley, New York

  4. Kays W, Crawford M (1980) Convective Heat and Mass Transfer. McGraw-Hill, New York

    Google Scholar 

  5. Oliveira PJ, Pinho FT (1999) Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids. J Fluid Mech 387:271–280

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Oliveira P (2002) An exact solution for tube and slit flow of a FENE-P fluid. Acta Mech 158:157–167

    Article  MATH  Google Scholar 

  7. Coelho PM, Pinho FT, Oliveira PJ (2003) Thermal entry flow for a viscoelastic fluid: the Graetz problem for the PTT model. Int J Heat Mass Transf 46:3865–3880

    Article  MATH  Google Scholar 

  8. Pinho F, Oliveira P (2000) Analysis of forced convection in pipes and channels with the simplified Phan-Thien–Tanner fluid. Int J Heat Mass Transf 43:2273–2287

    Article  MATH  Google Scholar 

  9. Coelho P, Pinho F, Oliveira P (2002) Fully developed forced convection of the Phan-Thien–Tanner fluid in ducts with a constant wall temperature. Int J Heat Mass Transf 45:1413–1423

    Article  MATH  Google Scholar 

  10. Filali A, Khezzar L, Siginer D, Nemouchi Z (2012) Graetz problem with non-linear viscoelastic fluids in non-circular tubes. Int J Thermal Sci 61:50–60

    Article  Google Scholar 

  11. Shah R, London A (1974) Thermal boundary conditions and some solutions for laminar duct flow forced convection. ASME J Heat Transf 96:159–165

    Article  Google Scholar 

  12. Oliveira P, Coelho P, Pinho F (2004) The Graetz problem with viscous dissipation for FENE-P fluids. J Non-Newtonian Fluid Mech 121:69–72

    Article  MATH  Google Scholar 

  13. Filali A, Khezzar L (2013) Numerical simulation of the Graetz problem in ducts with viscoelastic FENE-P fluids. Comput Fluids 84:1–15

    Article  MATH  Google Scholar 

  14. Iaccarino G, Shaqfeh ES, Dubief Y (2010) Reynolds-averaged modeling of polymer drag reduction in turbulent flows. J Non-Newtonian Fluid Mech 165:376–384

    Article  MATH  Google Scholar 

  15. Resende P, Pinho F, Younis B, Kim K, Sureshkumar R (2013) Development of a low-Reynolds-number k-ω Model for FENE-P Fluids. Flow Turbul Combust 90:69–94

    Article  Google Scholar 

  16. Resende P, Kim K, Younis B, Sureshkumar R, Pinho F (2011) A FENE-P k–ε turbulence model for low and intermediate regimes of polymer-induced drag reduction. J Non-Newtonian Fluid Mech 166:639–660

    Article  MATH  Google Scholar 

  17. Khezzar L, Filali A, AlShehhi M (2014) Flow and heat transfer of FENE-P fluids in ducts of various shapes: effect of Newtonian solvent contribution. J Non-Newtonian Fluid Mech 207:7–20

    Article  Google Scholar 

  18. Masoudian M, Pinho F, Kim K, Sureshkumar R (2016) A RANS model for heat transfer reduction in viscoelastic turbulent flow. Int J Heat Mass Transf 100:332–346

    Article  Google Scholar 

  19. Varagnolo S, Filippi D, Mistura G, Pierno M, Sbragaglia M (2017) Stretching of viscoelastic drops in steady sliding. Soft Matter 13:3116–3124

    Article  ADS  Google Scholar 

  20. Pinho F, Coelho P (2006) Fully-developed heat transfer in annuli for viscoelastic fluids with viscous dissipation. J Non-Newtonian Fluid Mech 138:7–21

    Article  MATH  Google Scholar 

  21. Coelho P, Pinho F (2006) Fully-developed heat transfer in annuli with viscous dissipation. Int J Heat Mass Transf 49:3349–3359

    Article  MATH  Google Scholar 

  22. Jalali A, Hulsen M, Norouzi M, Kayhani M (2013) Numerical simulation of 3D viscoelastic developing flow and heat transfer in a rectangular duct with a nonlinear constitutive equation. Korea Austr Rheol J 25:95–105

    Article  Google Scholar 

  23. Siginer DA, Letelier MF (2012) Laminar flow of non-linear viscoelastic fluids in straight tubes of arbitrary contour. Int J Heat Mass Transf 55:2731–2745

    Article  Google Scholar 

  24. Siginer DA, Letelier MF (2005) Heat transfer in laminar flow of viscoelastic fluids in straight tubes of arbitrary shape. Annu Trans Nord Rheol Soc 13:137–145

    Google Scholar 

  25. Norouzi M, Davoodi M, Bég OA, Joneidi A (2013) Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic Dean flow. Int J Thermal Sci 69:61–69

    Article  Google Scholar 

  26. Zhang M, Shen X, Ma J, Zhang B (2008) Theoretical analysis of convective heat transfer of Oldroyd-B fluids in a curved pipe. Int J Heat Mass Transf 51:661–671

    Article  MATH  Google Scholar 

  27. Shen X-R, Zhang M-K, Zhang B-Z (2008) Flow and heat transfer of Oldroyd-B fluids in a rotating curved pipe. J Hydrodyn Ser B 20:39–46

    Article  Google Scholar 

  28. Norouzi M, Sedaghat M, Shahmardan M (2014) An analytical solution for viscoelastic dean flow in curved pipes with elliptical cross section. J Non-Newtonian Fluid Mech 204:62–71

    Article  Google Scholar 

  29. Norouzi M, Biglari N (2013) An analytical solution for Dean flow in curved ducts with rectangular cross section. Phys Fluids 25:053602 (1994-present)

    Article  ADS  Google Scholar 

  30. Hsu CF, Patankar S (1982) Analysis of laminar non-Newtonian flow and heat transfer in curved tubes. AIChE J 28:610–616

    Article  Google Scholar 

  31. Norouzi M, Vamerzani BZ, Davoodi M, Biglari N, Shahmardan MM (2015) An exact analytical solution for creeping Dean flow of Bingham plastics through curved rectangular ducts. Rheol Acta 54:391–402

    Article  Google Scholar 

  32. Norouzi M, Davoodi M, Anwar Bég O (2015) An analytical solution for convective heat transfer of viscoelastic flows in rotating curved pipes. Int J Thermal Sci 90:90–111

    Article  Google Scholar 

  33. Bird R, Dotson P, Johnson N (1980) Polymer solution rheology based on a finitely extensible bead—spring chain model. J Non-Newtonian Fluid Mech 7:213–235

    Article  MATH  Google Scholar 

  34. Townsend P, Walters K (1994) Expansion flows on non-newtonian liquids. Chem Eng Sci 49:748–763

    Article  Google Scholar 

  35. Bird RB, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids. Vol. 1: Fluid mechanics

  36. Bird RB, Wiest JM (1995) Constitutive equations for polymeric liquids. Ann Rev Fluid Mech 27:169–193

    Article  ADS  MathSciNet  Google Scholar 

  37. Bird RB (2007) Teaching with FENE dumbbells. Rheol Bull 76:10–12

    Google Scholar 

  38. Boyce WE, DiPrima RC (2012) Elementary differential equations and boundary value problems. Wiley, New York

    MATH  Google Scholar 

  39. Bejan A (2013) Convection heat transfer. Wiley, Hoboken

    Book  MATH  Google Scholar 

  40. Norouzi M, Davoodi M (2015) Exact analytical solution on convective heat transfer of isothermal pipes. AIAA J Thermophys Heat Transf 29:632–636

    Article  Google Scholar 

  41. Canale RP, Chapra SC (2014) Numerical methods for engineers. 7th edn. McGraw-Hill Education, New York

  42. Cruz DOA, Pinho FT, Oliveira PJ (2005) Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution. J Non-Newtonian Fluid Mech 132:28–35

    Article  MATH  Google Scholar 

  43. Olver FWJ et al (2010) NIST handbook of mathematical functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norouzi.

Appendices

Appendix A: Heun functions

Heun functions are one of the closed form solutions for particular ODEs in mathematics and there are four standard forms, namely HeunB, HeunC, HeunD and HeunT which correspond to Biconfluent, Confluent, Doubleconfluent and Triconfluent Heun equations. HeunT function is the solution for the linear differential equation of second order given by:

$$ \frac{{{\text{d}}^{2} }}{{{\text{d}}y^{2} }}f(y) - \left( {3{\mkern 1mu} y^{2} + \gamma } \right)\frac{\text{d}}{{{\text{d}}y}}f(y) - \left( {\left( { - \beta + 3} \right)y - \alpha } \right)f(y) = 0 $$
(29)

in which all of the four parameters, \( \left( {\alpha ,\beta ,\gamma ,y} \right) \), are algebraic expressions. By solving the Eq. (29) the closed form solution (HeunT) would be derived as follows:

$$ f(y) = C_{1} HeunT\left( {\alpha ,\beta ,\gamma ,y} \right) + C_{2} {\mkern 1mu} HeunT\left( {\alpha , - \beta ,\gamma , - y} \right){\text{e}}^{{y(y^{2} + \gamma )}} . $$
(30)

Now based on the boundary conditions introduced in Eqs. (31) and (32), the second term in Eq. (30) will vanish, so that Eq. (30) will be simplified to the one given by Eq. (33).

$$ at\,\,\,\,\,y = 0\,\,\,\,\, \Rightarrow \,\,\,\,\,f_{,y} = 0 $$
(31)
$$ at\,\,\,\,\,y = 0\,\,\,\,\, \Rightarrow \,\,\,\,\,f = 0 $$
(32)
$$ f(y) = C_{1} HeunT\left( {\alpha ,\beta ,\gamma ,y} \right). $$
(33)

Furthermore, the HeunT function could be written in the series solution form. Since the single singularity is located at infinity, this series converges into the entire complex plane. The Handbook of Mathematical functions prepared by the National Institute of Standards and Technology (NIST), Maryland, USA, is an excellent reference for Heun functions.

Appendix B: The Nusselt number and constants of temperature profile

In this section, the polynomial equation of the Nusselt number of FENE-P flow in an isothermal tube has been presented. This polynomial is obtained by applying the boundary condition (14b) to Eq. (24) and considering C 2  = 0. According to the scaling law in heat convection, the Nusselt number is the first order root of the following algebraic equation:

$$ \begin{aligned} - (\frac{{U_{N} }}{U})^{7} \left( \begin{aligned} \frac{1}{{3251404800{\mkern 1mu} {\kern 1pt} }} + \frac{1}{{29030400{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{2} + \frac{1}{{604800{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{4} + \frac{1}{{22680{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{6} \hfill \\ +\,\frac{{2{\mkern 1mu} {\kern 1pt} }}{{2835{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{8} + \frac{{32{\mkern 1mu} {\kern 1pt} }}{{4725{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{10} + \frac{{512{\mkern 1mu} }}{{14175{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{12} + \frac{{8192{\mkern 1mu} }}{{99225{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{14} \hfill \\ \end{aligned} \right)Nu^{7} . \hfill \\ +\,(\frac{{U_{N} }}{U})^{6} \left( \begin{aligned} - \frac{1}{{38707200{\mkern 1mu} }} - \frac{{23{\mkern 1mu} }}{{14515200{\mkern 1mu} }}(\frac{{DeU_{N} }}{LUa})^{2} - \frac{1}{{36288{\mkern 1mu} }}(\frac{{DeU_{N} }}{LUa})^{4} + \frac{1}{{5670{\mkern 1mu} {\kern 1pt} L^{6} U^{12} a^{6} }}(\frac{{DeU_{N} }}{LUa})^{6} + \hfill \\ \frac{{32{\mkern 1mu} {\kern 1pt} }}{{2835{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{8} + \frac{{1856{\mkern 1mu} {\kern 1pt} }}{{14175{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{10} + \frac{{1024{\mkern 1mu} {\kern 1pt} }}{{2025{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{12} \hfill \\ \end{aligned} \right)Nu^{6} \hfill \\ - (\frac{{U_{N} }}{U})^{5} \left( \begin{aligned} \frac{1}{{1382400{\mkern 1mu} {\kern 1pt} }} + \frac{{53{\mkern 1mu} {\kern 1pt} }}{{2419200{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{2} + \frac{{13{\mkern 1mu} {\kern 1pt} }}{{453600{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{4} - \frac{1}{{378{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{6} \hfill \\ +\,\frac{{8{\mkern 1mu} {\kern 1pt} }}{{525{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{8} + \frac{{1024{\mkern 1mu} {\kern 1pt} }}{{2835{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{10} \hfill \\ \end{aligned} \right)Nu^{5} \hfill \\ +\, (\frac{{U_{N} }}{U})^{4} \left( {\frac{{4631{\mkern 1mu} {\kern 1pt} }}{{203212800{\mkern 1mu} {\kern 1pt} }} + \frac{{51049{\mkern 1mu} {\kern 1pt} }}{{25401600{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{2} + \frac{{28789{\mkern 1mu} {\kern 1pt} }}{{529200{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{4} + \frac{{60064{\mkern 1mu} {\kern 1pt} }}{{99225{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{6} + \frac{{5056{\mkern 1mu} {\kern 1pt} }}{{2025{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{8} } \right)Nu^{4} \hfill \\-\, (\frac{{U_{N} }}{U})^{3} \left( {\frac{{59{\mkern 1mu} {\kern 1pt} }}{{51200{\mkern 1mu} {\kern 1pt} }} + \frac{{107003{\mkern 1mu} {\kern 1pt} }}{{1587600{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{2} + \frac{{26126{\mkern 1mu} {\kern 1pt} }}{{19845{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{4} + \frac{{837248{\mkern 1mu} {\kern 1pt} }}{{99225{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{6} } \right)Nu^{3} \hfill \\ +\,(\frac{{U_{N} }}{U})^{2} \left( {\frac{{73{\mkern 1mu} {\kern 1pt} }}{{2304{\mkern 1mu} {\kern 1pt} }} + \frac{{551{\mkern 1mu} {\kern 1pt} }}{{450{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{2} + \frac{{952{\mkern 1mu} {\kern 1pt} }}{{81{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{4} } \right)Nu^{2} - {\kern 1pt} \frac{{U_{N} }}{U}\left( {\frac{3}{8}{\mkern 1mu} + \frac{{64{\mkern 1mu} }}{{9{\mkern 1mu} {\kern 1pt} }}(\frac{{DeU_{N} }}{LUa})^{2} } \right)Nu + 1 = 0 \hfill \\ \end{aligned} $$
(34)

The nonzero constant of temperature distribution (C 1 ) can be determined using the constraint presented in Eq. (15), for j = 1, as follows:

$$ \begin{aligned} C_{1}^{ - 1} & = T_{\hbox{max} }^{ - 1} = \frac{{4096{\mkern 1mu} {\kern 1pt} }}{{315{\mkern 1mu} {\kern 1pt} }}Nu^{4} \left( {\frac{De}{aL}} \right)^{10} \left( {\frac{{U_{N} }}{U}} \right)^{15} + \frac{704}{189}Nu^{4} \left( {\frac{De}{aL}} \right)^{8} \left( {\frac{{U_{N} }}{U}} \right)^{13} - \frac{1024}{27}Nu^{3} \left( {\frac{De}{aL}} \right)^{8} \left( {\frac{{U_{N} }}{U}} \right)^{12} \\ & \quad + \frac{80}{189}Nu^{4} \left( {\frac{De}{aL}} \right)^{6} \left( {\frac{{U_{N} }}{U}} \right)^{11} - \frac{{64{\mkern 1mu} {\kern 1pt} }}{{9{\mkern 1mu} {\kern 1pt} }}Nu^{3} \left( {\frac{De}{aL}} \right)^{6} \left( {\frac{{U_{N} }}{U}} \right)^{10} \\ & \quad + \left( {\frac{1}{42}{\mkern 1mu} {\kern 1pt} \left( {\frac{NuDe}{aL}} \right)^{4} + \frac{{18944{\mkern 1mu} {\kern 1pt} }}{{315{\mkern 1mu} {\kern 1pt} }}Nu^{2} \left( {\frac{De}{aL}} \right)^{6} } \right)\left( {\frac{{U_{N} }}{U}} \right)^{9} - \frac{13}{27}Nu^{3} \left( {\frac{De}{aL}} \right)^{4} \left( {\frac{{U_{N} }}{U}} \right)^{8} \\ & \quad + Nu^{2} \left( {\frac{1}{{1512{\mkern 1mu} {\kern 1pt} }}\left( {\frac{NuDe}{aL}} \right)^{2} + \frac{{312{\mkern 1mu} {\kern 1pt} }}{{35{\mkern 1mu} }}\left( {\frac{De}{aL}} \right)^{4} } \right)\left( {\frac{{U_{N} }}{U}} \right)^{7} + Nu{\mkern 1mu} \left( { - \frac{1}{{72{\mkern 1mu} }}\left( {\frac{NuDe}{aL}} \right)^{2} - \frac{1664}{27}\left( {\frac{De}{aL}} \right)^{4} } \right)\left( {\frac{{U_{N} }}{U}} \right)^{6} \\ & \quad + \left( {\frac{1}{138240}Nu^{4} + \frac{37}{84}\left( {\frac{NuDe}{aL}} \right)^{2} } \right)\left( {\frac{{U_{N} }}{U}} \right)^{5} + \left( { - \frac{1}{6912}Nu^{3} - \frac{{272{\kern 1pt} }}{45}Nu\left( {\frac{De}{aL}} \right)^{2} } \right)\left( {\frac{{U_{N} }}{U}} \right)^{4} \\ & \quad + \left( {\frac{83}{11520}Nu^{2} + \frac{{64{\kern 1pt} }}{3}\left( {\frac{De}{aL}} \right)^{2} } \right)\left( {\frac{{U_{N} }}{U}} \right)^{3} - \frac{{7{\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} }}{{48{\mkern 1mu} {\kern 1pt} }}Nu\left( {\frac{{U_{N} }}{U}} \right)^{2} + \frac{{U_{N} }}{U}. \\ \end{aligned} $$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi, M., Daghighi, S.Z. & Anwar Bég, O. Exact analysis of heat convection of viscoelastic FENE-P fluids through isothermal slits and tubes. Meccanica 53, 817–831 (2018). https://doi.org/10.1007/s11012-017-0782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0782-2

Keywords

Navigation