Skip to main content
Log in

Free vibration analysis of cantilever open-hole composite plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The free vibration behavior of quasi-isotropic carbon fiber laminated composite plates containing circular holes with free-clamped boundary conditions are numerically, analytically, and experimentally investigated. Finite element models based on classical plate theory (Kirchhoff) and the shear deformable theory (Mindlin) within the framework of equivalent single-layer and layer-wise concepts as well as the three-dimensional theory of elasticity are developed. These models are created using the finite element software, Abaqus, to determine the natural frequencies and the corresponding mode shapes. In addition, an analytical model based on Kirchhoff plate theory is developed. Using this approach, an equivalent bending-torsion beam model for cantilever laminated plates is extracted taking into account the reduction in local stiffness and mass induced by the center hole. Experimental vibration analyses are carried out using an optically-based vibration measurement tool to extract the frequency response functions and to measure the natural frequencies. Numerical and analytical natural frequency values are then compared with those obtained through experimental vibrational tests, and the accuracy of each finite element (FE) and analytical model type is assessed. It is shown that the natural frequencies obtained using the analytical and FE models are within 8% of the experimentally determined values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bai J (2013) 1 Introduction. In: Bai J (ed) Advanced fibre-reinforced polymer (FRP) composites for structural applications. Woodhead Publishing, Sawston, pp 1–4. doi:10.1533/9780857098641.1

    Chapter  Google Scholar 

  2. Aidi B, Case SW (2015) Experimental and numerical analysis of notched composites under tension loading. Appl Compos Mater 22(6):837–855. doi:10.1007/s10443-015-9439-2

    Article  ADS  Google Scholar 

  3. Kalhor R, Case SW (2015) The effect of FRP thickness on energy absorption of metal-FRP square tubes subjected to axial compressive loading. Compos Struct 130:44–50. doi:10.1016/j.compstruct.2015.04.009

    Article  Google Scholar 

  4. Aidi B, Philen MK, Case SW (2015) Progressive damage assessment of centrally notched composite specimens in fatigue. Compos A Appl Sci Manuf 74:47–59. doi:10.1016/j.compositesa.2015.03.022

    Article  Google Scholar 

  5. Thai CH, Nguyen-Xuan H, Nguyen-Thanh N, Le TH, Nguyen-Thoi T, Rabczuk T (2012) Static, free vibration, and buckling analysis of laminated composite Reissner–Mindlin plates using NURBS-based isogeometric approach. Int J Numer Methods Eng 91(6):571–603. doi:10.1002/nme.4282

    Article  MathSciNet  MATH  Google Scholar 

  6. Alijani F, Amabili M, Ferrari G, D’Alessandro V (2013) Nonlinear vibrations of laminated and sandwich rectangular plates with free edges. Part 2: experiments & comparisons. Compos Struct 105:437–445. doi:10.1016/j.compstruct.2013.05.020

    Article  Google Scholar 

  7. Burlayenko VN, Altenbach H, Sadowski T (2015) An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates. J Sound Vib 358:152–175. doi:10.1016/j.jsv.2015.08.010

    Article  ADS  Google Scholar 

  8. Fazzolari FA, Boscolo M, Banerjee JR (2013) An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies. Compos Struct 96:262–278. doi:10.1016/j.compstruct.2012.08.033

    Article  Google Scholar 

  9. Zhen W, Lo SH, Xiaohui R (2015) A C0 zig-zag model for the analysis of angle-ply composite thick plates. Compos Struct 127:211–223. doi:10.1016/j.compstruct.2014.10.008

    Article  Google Scholar 

  10. Javanshir J, Farsadi T, Yuceoglu U (2012) Free vibrations of composite base plates stiffened by two adhesively bonded plate strips. J Aircr 49(4):1135–1152. doi:10.2514/1.C031691

    Article  Google Scholar 

  11. Wang Q, Shi D, Shi X (2016) A modified solution for the free vibration analysis of moderately thick orthotropic rectangular plates with general boundary conditions, internal line supports and resting on elastic foundation. Meccanica 51(8):1985–2017. doi:10.1007/s11012-015-0345-3

    Article  MATH  Google Scholar 

  12. Viswanathan KK, Javed S, Aziz ZA, Prabakar K (2015) Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory. Meccanica 50(12):3013–3027. doi:10.1007/s11012-015-0175-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Sayyad AS, Ghugal YM (2015) On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos Struct 129:177–201. doi:10.1016/j.compstruct.2015.04.007

    Article  Google Scholar 

  14. Noor AK (1973) Free vibrations of multilayered composite plates. AIAA J 11(7):1038–1039. doi:10.2514/3.6868

    Article  ADS  Google Scholar 

  15. Reddy JN (1979) Free vibration of antisymmetric, angle-ply laminated plates including transverse shear deformation by the finite element method. J Sound Vib 66(4):565–576. doi:10.1016/0022-460X(79)90700-4

    Article  ADS  MATH  Google Scholar 

  16. Khandelwal RP, Chakrabarti A (2015) Calculation of interlaminar shear stresses in laminated shallow shell panel using refined higher order shear deformation theory. Compos Struct 124:272–282. doi:10.1016/j.compstruct.2015.01.025

    Article  Google Scholar 

  17. Boscolo M (2013) Analytical solution for free vibration analysis of composite plates with layer-wise displacement assumptions. Compos Struct 100:493–510. doi:10.1016/j.compstruct.2013.01.015

    Article  Google Scholar 

  18. Carrera E (1998) Layer-wise mixed models for accurate vibrations analysis of multilayered plates. J Appl Mech 65(4):820–828. doi:10.1115/1.2791917

    Article  Google Scholar 

  19. Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56(3):287–308. doi:10.1115/1.1557614

    Article  ADS  MathSciNet  Google Scholar 

  20. Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. ARCO 10(3):215–296. doi:10.1007/BF02736224

    Article  MathSciNet  MATH  Google Scholar 

  21. Kwak MK, Heo S (2011) Independent coordinate coupling method for free vibration analysis of a plate with holes. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  22. Viola E, Tornabene F, Fantuzzi N (2013) Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Compos Struct 106:815–834. doi:10.1016/j.compstruct.2013.07.034

    Article  Google Scholar 

  23. Chen YC, Hwu C (2014) Boundary element method for vibration analysis of two-dimensional anisotropic elastic solids containing holes, cracks or interfaces. Eng Anal Bound Elem 40:22–35. doi:10.1016/j.enganabound.2013.11.013

    Article  MathSciNet  MATH  Google Scholar 

  24. Fantuzzi N, Tornabene F, Viola E, Ferreira AJM (2014) A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 49(10):2503–2542. doi:10.1007/s11012-014-0014-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Capozucca R, Bonci B (2015) Notched CFRP laminates under vibration. Compos Struct 122:367–375. doi:10.1016/j.compstruct.2014.11.062

    Article  Google Scholar 

  26. Tong L, Steven GP (1999) Analysis and design of structural bonded joints. Kluwer Academic, Boston

    Book  Google Scholar 

  27. Abaqus Theory Guide Section3 v6.14

  28. Reddy JN (1997) Mechanics of laminated composites plates: theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilel Aidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aidi, B., Shaat, M., Abdelkefi, A. et al. Free vibration analysis of cantilever open-hole composite plates. Meccanica 52, 2819–2836 (2017). https://doi.org/10.1007/s11012-017-0626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0626-0

Keywords

Navigation