Skip to main content
Log in

An analytic solution of the static problem of inclined risers conveying fluid

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is modeled as an Euler–Bernoulli beam taking into account its self-weight, mid-plane stretching, an applied axial tension, and the internal fluid velocity. The solution consists of three parts: an outer solution valid away from the two boundaries and two inner solutions valid near the two ends. The three solutions are then matched and combined into a so-called composite expansion. A Newton–Raphson method is used to determine the value of the mid-plane stretching corresponding to each applied tension and internal velocity. The analytic solution is in good agreement with those obtained with other solution methods for large values of applied tensions. Therefore, it can be used to replace other mathematical solution methods that suffer numerical limitations and high computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Palmer A, Hutchinson G, Ells J (1974) Configuration of submarine pipelines during laying operations. J Manuf Sci Eng 96:1112–1118

    Google Scholar 

  2. Meng D, Chen L (2012) Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser. Appl Ocean Res 34:52–67

    Article  Google Scholar 

  3. Srinil N, Wiercigroch M, O’Brien P, Younger R (2009) Vortex-induced vibration of catenary riser: reduced-order modeling and lock-in analysis using wake oscillator. In: Proceedings of the 28th international conference on ocean, offshore and arctic engineering, New York

  4. Rivero-Angeles FJ, Vázquez-Hernández AO, Martinez U (2014) Vibration analysis for the determination of modal parameters of steel catenary risers based on response-only data. Eng Struct 59:68–79

    Article  Google Scholar 

  5. Wu X, Ge F, Hong Y (2012) A review of recent studies on vortex-induced vibrations of long slender cylinders. J Fluids Struct 28:292–308

    Article  Google Scholar 

  6. Chen H, Xu S, Guo H (2011) Nonlinear analysis of flexible and steel catenary risers with internal flow and seabed interaction effects. J Mar Sci Appl 10:156–162

    Article  Google Scholar 

  7. Sınır BG (2013) Pseudo-nonlinear dynamic analysis of buckled pipes. J Fluids Struct 37:151–170

    Article  Google Scholar 

  8. Nayfeh A, Emam S (2008) Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn 54:395–408

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernitsas MM, Kokkinis T (1984) Asymptotic behavior of heavy column and riser stability boundaries. J Appl Mech 51:560–565

    Article  Google Scholar 

  10. Bernitsas M, Kokkinis T (1983) Buckling of columns with nonmovable boundaries. J Struct Eng 109:2113–2128

    Article  Google Scholar 

  11. Sampaio JHB Jr, Hundhausen JR (1998) A mathematical model and analytical solution for buckling of inclined beam-columns. Appl Math Model 22:405–421

    Article  Google Scholar 

  12. Nayfeh AH (2011) Introduction to perturbation techniques. Wiley, Hoboken

    MATH  Google Scholar 

  13. Chatjigeorgiou IK (2007) Solution of the boundary layer problems for calculating the natural modes of riser-type slender structures. J Offshore Mech Arct Eng 130:011003

    Article  Google Scholar 

  14. Holmes PJ (1977) Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J Sound Vib 53:471–503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wilson JF, Biggers SB (1974) Responses of submerged, inclined pipelines conveying mass. J Eng Ind 96:1141–1146

    Article  Google Scholar 

  16. Bernitsas MM, Kokarakis JE, Imron A (1985) Large deformation three-dimensional static analysis of deep water marine risers. Appl Ocean Res 7:178–187

    Article  Google Scholar 

  17. Vaz MA, Castelpoggi FSA (2012) Geometrically non-linear analysis of inclined elastic rods subjected to self-weight. J Braz Soc Mech Sci Eng 34:62–68

    Article  Google Scholar 

  18. Santillan ST, Virgin LN (2011) Numerical and experimental analysis of the static behavior of highly deformed risers. Ocean Eng 38:1397–1402

    Article  Google Scholar 

  19. Chucheepsakul S, Monprapussorn T, Huang T (2003) Large strain formulations of extensible flexible marine pipes transporting fluid. J Fluids Struct 17:185–224

    Article  Google Scholar 

  20. Athisakul C, Phanyasahachart T, Klaycham K, Chucheepsakul S (2012) Static equilibrium configurations and appropriate applied top tension of extensible marine riser with specified total arc-length using finite element method. Eng Struct 34:271–277

    Article  Google Scholar 

  21. Wu MC, Lou JYK (1991) Effects of rigidity and internal flow on marine riser dynamics. Appl Ocean Res 13:235–244

    Article  Google Scholar 

  22. Triantafyllou MS, Triantafyllou GS (1991) The paradox of the hanging string: an explanation using singular perturbations. J Sound Vib 148:343–351

    Article  ADS  MathSciNet  Google Scholar 

  23. Stump DM, van der Heijden GHM (2000) Matched asymptotic expansions for bent and twisted rods: applications for cable and pipeline laying. J Eng Math 38:13–31

    Article  MathSciNet  MATH  Google Scholar 

  24. Rezazadeh K, Bai Y, Tang J, Zhang L (2013) Analytical models for seabed interaction effects on steel catenary riser in touchdown zone. In: 32nd international conference on ocean, offshore and arctic engineering, pp 9–14

  25. Lenci S, Callegari M (2005) Simple analytical models for the J-lay problem. Acta Mech 178:23–39

    Article  MATH  Google Scholar 

  26. Mazzilli CE (2008) Effect of linearly varying normal force upon the nonlinear modal analysis of slender beams. In: Proceedings of the 6th European nonlinear oscillations conference, Saint Petersburg, Russia, pp 1–7

  27. Hsu Y, Pan C (2014) The static wkb solution to catenary problems with large sag and bending stiffness. Math Probl Eng 2014:11

    MathSciNet  Google Scholar 

  28. Wolfram Research Inc. (2015) Mathematica. Wolfram Research Inc., Champaign

    Google Scholar 

  29. Paidoussis MP (2014) Fluid–structure interactions. Academic Press, Oxford

    MATH  Google Scholar 

  30. Rao SS (2007) Vibration of continuous systems. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

We acknowledgethe financial support of King Abdullah Univeristy of Science and Technology and Saudi Aramco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis.

Appendix: Simplified eigenvalue problem

Appendix: Simplified eigenvalue problem

The objective of this section is to illustrate how to reduce the eigenvalue problem equation of an inclined riser to an equation of a beam by using a weightless structure assumption. This simplification makes the use of beam mode shapes in the Galerkin approximation more favorable than other sophisticated techniques. The equation of motion of the structure neglecting fluid drag forces is written as

$$\begin{aligned} EI{\frac{{\partial^{4} \hat{y}}}{{\partial \hat{x}^{4} }}} + M\left( {\frac{{\partial^{2} \hat{y}}}{{\partial \hat{t}^{2} }}} \right) + 2m_{f} U_{i} \left( {\frac{{\partial^{2} \hat{y}}}{{\partial \hat{x}\partial \hat{t}}}} \right) + \left( {m_{f} U_{i}^{2} - \left( {T_{e} - W_{e} \sin \left( \theta \right)\left( {L - \hat{x}} \right)} \right) - {\frac{{EA_{p} }}{2L}}\mathop \int \limits_{0}^{L} \left[ {\left( {\frac{{\partial \hat{y}}}{{\partial \hat{x}}}} \right)^{2} } \right]d\hat{x}} \right)\left( {\frac{{\partial^{2} \hat{y}}}{{\partial \hat{x}^{2} }}} \right) \\ - W_{e} \sin \left( \theta \right)\left( {\frac{{\partial \hat{y}}}{{\partial \hat{x}}}} \right) + c\left( {\frac{{\partial \hat{y}}}{{\partial \hat{t}}}} \right) = - W_{e} \cos \left( \theta \right) \\ \end{aligned}$$
(43)

where \(M\) denotes the total mass defined as \(M = m_{s} + m_{f} + m_{A}\). The subscripts s, f, and A denote the structure, fluid, and added mass, respectively, and c denotes the structural damping. To simplify the analysis, we introduce the following dimensionless variables:

$$\begin{aligned} y = {\frac{{\hat{y}}}{D}};\quad x = {\frac{{\hat{x}}}{L}};\quad t = {\sqrt {\frac{EI}{ML^{4}}}} \hat{t};\quad \bar{\sigma } = {\frac{{W_{e} L^{3} \sin (\theta )}}{EI}};\quad \bar{\eta } = {\frac{{A_{p} D^{2} }}{2I}};\quad \bar{F}_{s} = {\frac{{W_{e} L^{3} \cos (\theta )}}{{EID_{e} }}};\quad \\ \bar{v} = {\frac{{U_{i} {\sqrt {m_{f}}} L}}{\sqrt {EI}}};\quad \bar{T} = {\frac{{T_{e} L^{2} }}{EI}};\quad \beta = {\frac{{m_{f} }}{M}};\quad \bar{c} = {\frac{{cL^{2} }}{\sqrt {MEI}}} \\ \end{aligned}$$
(44)

Then Eq. (43) becomes

$$\frac{{\partial^{4} y}}{{\partial x^{4} }} + \frac{{\partial^{2} y}}{{\partial t^{2} }} + 2{\sqrt {\beta}} \bar{v}\frac{{\partial^{2} y}}{\partial x\partial t} + \left( {\bar{v}^{2} - \left( {\bar{T}_{e} - \bar{\sigma }\left( {1 - x} \right)} \right) - \bar{\eta }\mathop \int \limits_{0}^{L} \left[ {\left( {\frac{\partial y}{\partial x}} \right)^{2} } \right]\partial x} \right)\frac{{\partial^{2} y}}{{\partial x^{2} }} - \bar{\sigma }\frac{\partial y}{\partial x} + \bar{c}\frac{\partial y}{\partial t} = - \bar{F}_{s}$$
(45)

The boundary conditions of the structure are written as

$$y(0) = 0;\quad \left. {\frac{dy}{dx}} \right|_{x = 0} = 0;\quad y(1) = 0;\quad \left. {\frac{dy}{dx}} \right|_{x = 1} = 0$$
(46)

We set \(\bar{\sigma } = 0\) to reduce Eq. (45) to the following well-known nonlinear equation of horizontal straight beams:

$$\frac{{\partial^{4} y}}{{\partial x^{4} }} + \frac{{\partial^{2} y}}{{\partial t^{2} }} + 2{\sqrt {\beta}} \bar{v}\frac{{\partial^{2} y}}{\partial x\partial t} + \left( {\bar{v}^{2} - \bar{T}_{e} - \bar{\eta }\mathop \int \limits_{0}^{L} \left[ {\left( {\frac{\partial y}{\partial x}} \right)^{2} } \right]\partial x} \right)\frac{{\partial^{2} y}}{{\partial x^{2} }} + \bar{c}\frac{\partial y}{\partial t} = - \bar{F}_{s}$$
(47)

To obtain the mode shapes, we solve the linear free vibration problem of inclined risers given by Eq. (47) by neglecting the mid-plane stretching, damping, and static force term \(\bar{F}_{s}\); that is,

$$\frac{{\partial^{4} y}}{{\partial x^{4} }} + \frac{{\partial^{2} y}}{{\partial t^{2} }} + 2{\sqrt {\beta}} \bar{v}\frac{{\partial^{2} y}}{\partial x\partial t} + \left( {\bar{v}^{2} - \bar{T}_{e} } \right)\frac{{\partial^{2} y}}{{\partial x^{2} }} = 0$$
(48)

with the boundary conditions given by Eq. (46).

We assume a solution of Eq. (48) in the following form:

$$y(x,t) = \phi (x)e^{i\omega t}$$
(49)

Substituting solution (49) into Eq. (48) and assuming that \(\phi (x) = e^{isx}\), we obtain the following algebraic equation:

$$s^{4} - \left( {\bar{v}^{2} - \bar{T}_{e} } \right)s^{2} - 2s{\sqrt {\beta}} \bar{v}\omega - \omega^{2} = 0$$
(50)

The roots of Eq. (50) govern the eigenvalues of the mode shapes which can be written after further manipulation as [29, 30]

$$\phi_{j} \left( x \right) = A\;\cosh \left( {s_{1j} x} \right) + B\;\sinh \left( {s_{1j} x} \right) + C\;\cos \left( {s_{2j} x} \right) + D\;\sin \left( {s_{2j} x} \right)$$
(51)

where the \(s_{1j}\) and \(s_{2j}\) are the real and complex roots of Eq. (50), respectively. The constants \(A,B,C,\) and \(D\) are obtained by applying the boundary conditions

$$\phi (0) = 0;\quad \left. {\frac{d\phi }{dx}} \right|_{x = 0} = 0;\quad \phi (1) = 0;\quad \left. {\frac{d\phi }{dx}} \right|_{x = 1} = 0$$
(52)

Using the above mode shapes, we seek an approximation to the static defletion governed by Eq. (45) by using the Galerkin approximation in the following form:

$$y(x,t) = \sum\limits_{i = 1}^{n} {\phi {}_{i}(x)} \;u(t)$$
(53)

Substituting Eq. (53) into Eq. (45) yields

$$\sum\limits_{i = 1}^{n} {\frac{{d^{4} \phi {}_{i}}}{{dx^{4} }}} u(t) + \left( {\bar{v}^{2} - \left( {\bar{T}_{e} - \bar{\sigma }\left( {1 - x} \right)} \right) - \bar{\eta }\mathop \int \limits_{0}^{L} \left[ {\left( {\sum\limits_{i = 1}^{n} {\frac{{d\phi {}_{i}}}{dx}} u(t)} \right)^{2} } \right]dx} \right)\left( {\sum\limits_{i = 1}^{n} {\frac{{d^{2} \phi {}_{i}}}{{dx^{2} }}} u(t)} \right) - \bar{\sigma }\sum\limits_{i = 1}^{n} {\frac{{d\phi {}_{i}}}{dx}} u(t) = - \bar{F}_{s}$$
(54)

We multiply Eq. (54) with \(\phi {}_{i}(x)\), integrate the outcome, and use the orthogonality of the mode shapes. We note that the result would be a nonlinear system of algebraic equations. For convergence, we use seven terms in the Galerkin approximation [13, 14, 29]. This number of modes provides sufficient accuracy because the participation of the low-frequency mode shapes is larger than that of the high-frequency modes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfosail, F.K., Nayfeh, A.H. & Younis, M.I. An analytic solution of the static problem of inclined risers conveying fluid. Meccanica 52, 1175–1187 (2017). https://doi.org/10.1007/s11012-016-0459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0459-2

Keywords

Navigation