Skip to main content
Log in

Nonlinear vibration analysis of a spinning shaft with multi-disks

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this study the stability of a rotor system, which is comprised of a simply supported nonlinear spinning shaft with multi-rigid disk, near to the major critical speeds is investigated. The nonlinearity is due to the stretching and large amplitude. The influence of rotary inertia and gyroscopic effects are included, however, shear deformation is ignored. To analyze the nonlinear equations of motion, the method of multiple scales is applied to the ordinary differential equations of motion. The influences of different parameter such as number of disks, disk mass moment of inertia, rotational speed, external damping, and position of disks on the forward and backward linear frequencies, steady state response, stability and bifurcations of the rotor system are investigated. It is seen that in the higher rotational speeds, the backward frequency is increasing with an increase of number of disks, and in the lower rotational speeds, the backward frequency is decreasing with an increase of number of disks. By increasing number of disks, bifurcations occur in the lower speeds therefore, the instability occurrence for large number of disk is at speeds lower than that regarding to the low number of disks. By an increase of disk mass moment of inertia, the amplitude and the hardening effect decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chiu Y-J, Chen D-Z (2011) The coupled vibration in a rotating multi-disk rotor system. Int J Mech Sci 53(1):1–10

    Article  Google Scholar 

  2. Sheu H-C, Chen L-W (2000) A lumped mass model for parametric instability analysis of cantilever shaft-disk systems. J Sound Vib 234(2):331–348

    Article  ADS  Google Scholar 

  3. Wang L, Cao DQ, Huang W (2010) Nonlinear coupled dynamics of flexible blade-rotor-bearing systems. Tribol Int 43(4):759–778

    Article  Google Scholar 

  4. Al-Shudeifat MA (2013) On the finite element modeling of the asymmetric cracked rotor. J Sound Vib 332(11):2795–2807. doi:10.1016/j.jsv.2012.12.026

    Article  ADS  Google Scholar 

  5. Chang-Jian C-W, Chen C-K (2006) Nonlinear dynamic analysis of a flexible rotor supported by micropolar fluid film journal bearings. Int J Eng Sci 44(15–16):1050–1070

    Article  MATH  Google Scholar 

  6. Karpenko EV, Wiercigroch M, Cartmell MP (2002) Regular and chaotic dynamics of a discontinuously nonlinear rotor system. Chaos Solitons Fractals 13(6):1231–1242

    Article  ADS  MATH  Google Scholar 

  7. Guo C, Al-Shudeifat MA, Yan J, Bergman LA, McFarland DM, Butcher EA (2013) Stability analysis for transverse breathing cracks in rotor systems. Eur J Mech A/Solids 42:27–34. doi:10.1016/j.euromechsol.2013.04.001

    Article  MathSciNet  Google Scholar 

  8. Furta S (2003) Linear vibrations of a rotating elastic beam with an attached point mass. J Eng Math 46(2):165–188. doi:10.1023/a:1023985702887

    Article  MathSciNet  MATH  Google Scholar 

  9. Khadem SE, Shahgholi M, Hosseini SAA (2010) Primary resonances of a nonlinear in-extensional rotating shaft. Mech Mach Theory 45(8):1067–1081

    Article  MATH  Google Scholar 

  10. Luczko J (2002) A geometrically non-linear model of rotating shafts with internal resonance and self-excited vibration. J Sound Vib 255(3):433–456

    Article  ADS  Google Scholar 

  11. Chang CO, Cheng JW (1993) Non-linear dynamics and instability of a rotating shaft-disk system. J Sound Vib 160(3):433–454

    Article  ADS  MATH  Google Scholar 

  12. Genin J, Maybee JS (1970) Whirling motion of a viscoelastic continuous shaft. Int J Eng Sci 8(8):671–686

    Article  MathSciNet  MATH  Google Scholar 

  13. Lakin WD (1976) Vibrations of a rotating flexible rod clamped off the axis of rotation. J Eng Math 10(4):313–321. doi:10.1007/bf01535567

    Article  MathSciNet  MATH  Google Scholar 

  14. Cveticanin L (1995) Resonant vibrations of nonlinear rotors. Mech Mach Theory 30(4):581–588

    Article  Google Scholar 

  15. Zu JW, Ji ZY (1998) Steady-state response of continuous nonlinear rotor-bearing systems using analytical approach. J Eng Gas Turbines Power 120(4):751–758

    Article  Google Scholar 

  16. Al-Shudeifat MA, Butcher EA, Stern CR (2010) General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: analytical and experimental approach. Int J Eng Sci 48(10):921–935

    Article  Google Scholar 

  17. Ishida Y, Yasuda K, Murakami S (1997) Nonstationary oscillation of a rotating shaft with nonlinear spring characteristics during acceleration through a major critical speed (a discussion by the asymptotic method and the complex-FFT method). J Vib Acoust 119(1):31–36

    Article  Google Scholar 

  18. Nachman A, Lakin WD (1982) Transverse buckling of a rotating Timoshenko beam. J Eng Math 16(2):181–195. doi:10.1007/bf00042553

    Article  MATH  Google Scholar 

  19. Shaw J, Shaw SW (1991) Non-linear resonance of an unbalanced rotating shaft with internal damping. J Sound Vib 147(3):435–451

    Article  ADS  Google Scholar 

  20. Al-Nassar YN, Al-Bedoor BO (2003) On the vibration of a rotating blade on a torsionally flexible shaft. J Sound Vib 259(5):1237–1242

    Article  ADS  Google Scholar 

  21. Verichev NN, Verichev SN, Erofeyev VI (2010) Damping lateral vibrations in rotary machinery using motor speed modulation. J Sound Vib 329(1):13–20

    Article  ADS  Google Scholar 

  22. Sabuncu M, Evran K (2006) The dynamic stability of a rotating pre-twisted asymmetric cross-section Timoshenko beam subjected to lateral parametric excitation. Int J Mech Sci 48(8):878–888

    Article  MATH  Google Scholar 

  23. Shahgholi M, Khadem S (2012) Resonances of an in-extensional asymmetrical spinning shaft with speed fluctuations. Meccanica. 48(1):103–120. doi:10.1007/s11012-012-9587-5

  24. Badlani M, Kleinhenz W, Hsiao CC (1978) The effect of rotary inertia and shear deformation on the parametric stability of unsymmetric shafts. Mech Mach Theory 13(5):543–553

    Article  Google Scholar 

  25. Vatta F, Vigliani A (2007) Asymmetric rotating shafts: an alternative analytical approach. Meccanica 42(2):207–210. doi:10.1007/s11012-006-9031-9

    Article  MATH  Google Scholar 

  26. Kamel M, Bauomy H (2010) Nonlinear behavior of a rotor-AMB system under multi-parametric excitations. Meccanica 45(1):7–22. doi:10.1007/s11012-009-9213-3

    Article  MATH  Google Scholar 

  27. Shahgholi M, Khadem S (2014) Hopf bifurcation analysis of asymmetrical rotating shafts. Nonlinear Dyn 77:1141–1155. doi:10.1007/s11071-014-1367-4

  28. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley-Interscience, New York

    Book  MATH  Google Scholar 

  29. Shahgholi M, Khadem S (2012) Primary and parametric resonances of asymmetrical rotating shafts with stretching nonlinearity. Mech Mach Theory 51:131–144. doi:10.1016/j.mechmachtheory.2011.12.012

  30. Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley-Interscience, New York

    Book  MATH  Google Scholar 

  31. Nayfeh AH (1981) Introduction to perturbation techniques. Wiley-Interscience, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Esmaeilzadeh Khadem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahgholi, M., Khadem, S.E. & Bab, S. Nonlinear vibration analysis of a spinning shaft with multi-disks. Meccanica 50, 2293–2307 (2015). https://doi.org/10.1007/s11012-015-0154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0154-8

Keywords

Navigation