Skip to main content

Advertisement

Log in

Reflection at the free surface of piezoelectric thermo-microstretch viscoelastic medium without energy dissipation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present paper is aimed to model and study the characteristics of various reflected waves in a homogeneous isotropic piezoelectric thermo-microstretch viscoelastic solid within the context of theory of thermoelasticity without energy dissipation. It is shown that there exists three sets of coupled longitudinal and two sets of coupled transverse waves with different speeds in a two-dimensional model of the solid. The speeds of all the existing waves are found to be complex valued and frequency dependent. The speeds of coupled longitudinal waves are found to be influenced by the electric effect, while the speeds of transverse waves remain unaffected to the electric effects. Reflection coefficients and energy ratios of various reflected waves are presented when (1) a set of coupled longitudinal waves is made incident and (2) a set of coupled transverse waves is made incident. The numerical computations have been carried out to calculate the phase speeds, reflection coefficients and energy ratios with the help of Matlab programming for aluminum-epoxy like material. The numerical values of the modulus of reflection coefficients and phase speeds are presented graphically to exhibit the viscous effects. The energy ratios as functions of angle of incidence are also shown graphically. Some particular cases of interest have been inferred from the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  ADS  MATH  Google Scholar 

  2. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  3. Green AE, Naghdi PM (1991) A reexamination of the basic results of thermomechanics. Proc R Soc Lond A 432:171–194

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stress 15:252–264

    Article  MathSciNet  ADS  Google Scholar 

  5. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MathSciNet  MATH  Google Scholar 

  6. Eringen AC (1990) Theory of thermo-microstretch elastic solids. Int J Eng Sci 28:1291–1301

    Article  MathSciNet  MATH  Google Scholar 

  7. Bofill F, Quintanilla R (1995) Some qualitative results for the linear theory of thermo-microstretch elastic solids. Int J Eng Sci 33:2115–2125

    Article  MathSciNet  MATH  Google Scholar 

  8. De Cicco S, Nappa L (1999) On the theory of thermomicrostretch elastic solids. J Therm Stress 22:565–580

    Article  Google Scholar 

  9. Green AE, Laws N (1972) On the entropy production inequality. Arch Rat Mech Anal 45:47–59

    Article  MathSciNet  Google Scholar 

  10. Kumar R, Deswal S (2001) Disturbance due to mechanical and thermal sources in a generalized thermo-microstretch elastic half space. Sadhana 26:529–547

    Article  MATH  Google Scholar 

  11. Kumar R, Rupender (2008) Reflection at the free surface of magneto-thermo-microstretch elastic solid. Bull Pol Acad Tech 56:263–271

    Google Scholar 

  12. Tomar SK, Khurana A (2009) Reflection and transmission of elastic waves from a plane interface between two thermo-microstretch solid half-spaces. Int J Appl Math Mech 5:48–68

    MATH  Google Scholar 

  13. Kumar R, Garg SK, Ahuja S (2013) A Study of plane wave and fundamental solution in the theory of an electro-microstretch generalized thermoelastic solid. Mat Phys Mech 16:34–54

    Google Scholar 

  14. Singh D, Kumar A, Kumar R (2014) A Problem in microstretch thermoelastic diffusive medium. Int J Mat Comput Phys Quant Eng 8:6–9

    MathSciNet  Google Scholar 

  15. Othman MIA, Abo-Dahab SM, Lotfy Kh (2014) Gravitational effect and initial stress on generalized magneto-thermo-microstretch elastic solid for different theories. Appl Math Comp 230:597–615

    Article  Google Scholar 

  16. Eringen AC (1999) Microcontinuum field theories I: foundation and solids. Springer, Newyork

    Book  Google Scholar 

  17. Eringen AC (2003) Continuum theory of micromorphic electromagnetic thermoelastic solids. Int J Eng Sci 41:653–665

    Article  MathSciNet  MATH  Google Scholar 

  18. Eringen AC (2004) Electromagnetic theory of microstretch elasticity and bone modeling. Int J Eng Sci 42:231–242

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee JD, Chen Y, Eskandarian A (2004) A micromorphic electromagnetic theory. Int J Solid Struct 41:2099–2110

    Article  MATH  Google Scholar 

  20. Iesan D (2006) On the microstretch piezoelectricity. Int J Eng Sci 44:819–829

    Article  MathSciNet  MATH  Google Scholar 

  21. Iesan D, Quintanilla R (2007) Some theorems in the theory of microstretch thermopiezoelectricity. Int J Eng Sci 45:1–16

    Article  MathSciNet  Google Scholar 

  22. Iesan D (2008) On the bending of piezoelectric plates with microstructure. Acta Mech 198:191–208

    Article  MATH  Google Scholar 

  23. Quintanilla R (2008) A spatial decay in the linear theory of microstretch piezoelectricity. Math Comp Model 47:1117–1124

    Article  MathSciNet  MATH  Google Scholar 

  24. Freudenthal AM (1954) Effect of rheological behaviour on thermal stresses. J Appl Phys 25:1110–1117

    Article  ADS  Google Scholar 

  25. Fung YC (1968) Foundations of solid mechanics. Prentice-Hall, Eaglewood Cliffs

    Google Scholar 

  26. Eringen AC (1967) Linear theory of micropolar viscoelasticity. Int J Eng Sci 5:191–204

    Article  MATH  Google Scholar 

  27. McCarthy MF, Eringen AC (1969) Micropolar viscoelastic waves. Int J Eng Sci 7:447–458

    Article  MATH  Google Scholar 

  28. De Cicco S, Nappa L (1998) On Saints Venants principle for micropolar viscoelastic bodies. Int J Eng Sci 36:883–893

    Google Scholar 

  29. Kumar R, Partap G (2010) Free vibration analysis of waves in a microstretch viscoelastic layer. Thai J Math 8:73–102

    MathSciNet  MATH  Google Scholar 

  30. Deswal S, Kalkal K (2013) Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures. Int J Heat Mass Trans 66:451–460

    Article  Google Scholar 

  31. Mindlin RD (1961) On the equations of motion of piezoelectric crystals. In: Muskilishivili NI (ed) Problems of continuum mechanics. SIAM, Philadelphia

    Google Scholar 

  32. Chandrasekharaiah DS (1978) A temperature-rate-dependent theory of thermopiezoelectricity. J Therm Stress 7:293–306

    Article  MathSciNet  Google Scholar 

  33. Chandrasekharaiah DS (1988) A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech 71:39–49

    Article  MATH  Google Scholar 

  34. Iesan D (2008) Thermopiezoelectricity without energy dissipation. Proc R Soc A 464:631–657

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Babaei MH, Chen ZT (2010) Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source. Arch Appl Mech 80:803–813

    Article  MATH  Google Scholar 

  36. Akbarzadeh AH, Babaei MH, Chen ZT (2011) Coupled thermopiezoelectric behaviour of a one-dimensional functionally graded piezoelectric medium based on C-T theory. Proc IMechE C: J Mech Eng Sci 225:2537–2551

    Google Scholar 

  37. Akbarzadeh AH, Babaei MH, Chen ZT (2011) Thermopiezoelectric analysis of a functionally graded piezoelectric medium. Int J Appl Mech 3:47–68

    Article  Google Scholar 

  38. Tomar SK, Khurana A (2008) Elastic waves in an electro-microelastic solid. Int J Solid Struct 45:276–302

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Deswal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Deswal, S. Reflection at the free surface of piezoelectric thermo-microstretch viscoelastic medium without energy dissipation. Meccanica 50, 2037–2061 (2015). https://doi.org/10.1007/s11012-015-0134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0134-z

Keywords

Navigation