Skip to main content
Log in

Forward and inverse dynamics of nonholonomic mechanical systems

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with the forward and the inverse dynamic problems of mechanical systems subjected to nonholonomic constraints. The intrinsically dual nature of these two problems is identified and utilised to develop a systematic approach to formulate and solve them according to an unified framework. The proposed methodology is based on the fundamental equations of constrained motion which derive from Gauss’s principle of least constraint. The main advantage arising from using the fundamental equations of constrained motion is that they represent an effective method capable to derive the generalised acceleration of a mechanical system, constrained in general by a set of nonholonomic constraints, together with the generalized constraint forces (forward dynamics). When the constraint equations are used to represent the desired behaviour of the mechanical system under study, the generalised constraint forces deriving from the fundamental equations of constrained motion provide the control actions which reproduce the specified motion for the system (inverse dynamics). This approach is systematically extended to underactuated mechanical systems introducing a new method named underactuation equivalence principle. The underactuation equivalence principle is founded on the key idea that the underactuation property of a mechanical system can be mathematically represented using a particular set of nonholonomic constraint equations. Two simple case-studies are reported to exemplify the proposed methodology. In the first case-study the computation of the generalised constraint forces relative to the revolute joint constraints of a physical pendulum is illustrated. In the second case-study the calculation of the control action which solves the swing-up problem for an inverted pendulum is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guida D, Pappalardo CM (2012) A new control algorithm for nonlinear underactuated mechanical systems. Int J Mech Eng Ind Des 1:61–82

    Google Scholar 

  2. Pappalardo CM (2012) Combination of extended Udwadia–Kalaba control algorithm with extended Kalman filter estimation method. Int J Mech Eng Ind Des 1:1–18

    Google Scholar 

  3. Shabana AA (2013) Dynamics of multibody systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Shabana AA (2010) Computational dynamics. Wiley, New York

    Book  MATH  Google Scholar 

  5. Moon FC (1992) Applied dynamics. Wiley–Interscience, New York

    Google Scholar 

  6. Moon FC (1992) Chaotic and fractal dynamics: an introduction for applied scientists and engineers. Wiley–Interscience, New York

    Book  Google Scholar 

  7. de Jalon JG, Bayo E (2011) Kinematic and dynamic simulation of multibody systems: the real-time challenge. Springer, New York

    Google Scholar 

  8. Bauchau OA (2011) Flexible multibody dynamics. Springer, Dordrecht

    Book  MATH  Google Scholar 

  9. Fantoni I, Lozano R (2002) Non-linear control for underactuated mechanical systems. Springer, Berlin

    Book  Google Scholar 

  10. Bloch AM, Baillieul J, Crouch P, Marsden J (2007) Nonholonomic mechanics and control. Springer, Berlin

    Google Scholar 

  11. Goldstein H, Poole CP, Safko JL (2001) Classical mechanics. Addison-Wesley, Reading

    Google Scholar 

  12. Taylor JR (2005) Classical mechanics. University Science Books, Sausalito

    MATH  Google Scholar 

  13. Siciliano B, Sciavicco L, Villani L, Oriolo G (2011) Robotics: modelling, planning and control. Springer, Berlin

    Google Scholar 

  14. Jain A (2011) Robot and multibody dynamics: analysis and algorithms. Springer, New York

    Book  Google Scholar 

  15. Pappalardo CM (2012) Dynamics, identification and control of multibody systems. University of Salerno, Salerno

  16. Udwadia FE (2014) A new approach to stable optimal control of complex nonlinear dynamical systems. J Appl Mech 81:031001

    Article  Google Scholar 

  17. Udwadia FE, Schutte AD (2010) Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech 213:111–129

    Article  MATH  Google Scholar 

  18. Meirovitch L (2010) Methods of analytical dynamics. Dover, New York

    Google Scholar 

  19. Udwadia FE, Kalaba RE (1996) Analytical dynamics: a new approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Lanczos C (1986) The variational principles of mechanics. Dover, New York

    MATH  Google Scholar 

  21. Shabana AA (2011) Computational continuum mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Meirovitch L (2010) Fundamentals of vibrations. Waveland, Long Grove

    Google Scholar 

  23. Flannery MR (2005) The enigma of nonholonomic constraints. Am J Phys 73(3):265

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Landau LD, Lifshitz EM (1976) Mechanics. Butterworth-Heinemann, Oxford

    Google Scholar 

  25. Flannery MR (2011) The elusive D’Alembert–Lagrange dynamics of nonholonomic systems. Am J Phys 79(9):932

    Article  ADS  Google Scholar 

  26. Flannery MR (2011) D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J Math Phys 52(3):1–29

    Google Scholar 

  27. Greiner W (2010) Classical mechanics: systems of particles and Hamiltonian dynamics. Springer, Berlin

    Book  Google Scholar 

  28. Udwadia FE, Kalaba RE (1992) A new perspective on constrained motion. Proc R Soc Lond A 439:407–410

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Hertz H (2012) The principles of mechanics: presented in a new form. Cosimo Classics, New York

  30. Udwadia FE, Kalaba RE (1993) On motion. J Frankl Inst 330:571–577

    Article  MATH  MathSciNet  Google Scholar 

  31. Udwadia FE, Kalaba RE (2002) On the foundations of analytical dynamics. Int J Nonlinear Mech 37:1079–1090

    Article  MATH  MathSciNet  Google Scholar 

  32. Udwadia FE, Phohomsiri P (2006) Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc R Soc Lond A 462:2097–2117

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Udwadia FE, Kalaba RE, De Falco D (2009) Dinamica Analitica. Un Nuovo Approccio, Edises

    Google Scholar 

  34. Cheli F, Pennestri E (2006) Cinematica e Dinamica dei Sistemi Multibody, vol 1. Casa Editrice Ambrosiana, Milano

  35. Pennestri E, De Falco D, Vita L (2009) An investigation of the influence of the pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J Aerosp Eng 22:365–372

    Article  Google Scholar 

  36. Udwadia FE, Wanichanon T (2010) Hamel’s paradox and the foundations of analytical dynamics. Appl Math Comput 217:1253–1263

    Article  MATH  MathSciNet  Google Scholar 

  37. Udwadia FE (2005) Equations of motion for constrained multibody systems and their control. J Optim Theory Appl 127(3):627–638

    Article  MATH  MathSciNet  Google Scholar 

  38. Udwadia FE (2008) Optimal tracking control of nonlinear dynamical systems. Proc R Soc Lond A 464:2341–2363

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Slotine JJ, Li W (1991) Applied nonlinear control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  40. Golub GH, Van Loan CF (1996) Matrix computations. The Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  41. Strang G (2005) Linear algebra and its applications. Cengage Learning, Stamford

    Google Scholar 

  42. Kane TR, Levinson DA (1985) Dynamics: theory and applications. McGraw-Hill College, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine M. Pappalardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guida, D., Pappalardo, C.M. Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49, 1547–1559 (2014). https://doi.org/10.1007/s11012-014-9937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9937-6

Keywords

Navigation