Skip to main content
Log in

Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The three-dimensional free vibration and static analysis of the laminated plates with functionally graded (FG) carbon nanotube reinforced composite (CNTRC) layers is presented using a semi-analytical approach. The individual layers are assumed to be made from a mixture of aligned and straight single-walled carbon nanotubes (CNTs) with volume fractions graded in the thickness direction, and an isotropic matrix. The effective material properties of the resulting FG-CNTRC layers are estimated through a micromechanical model. The through-the-thickness variations of the displacement components are accurately modeled using a layerwise-differential quadrature method, and their in-plane variations are approximated using the trigonometric series. After demonstrating the convergence and accuracy of the method, the effects of geometrical parameters, type of CNTs distribution and volume fractions, and also lamination scheme on the natural frequencies, displacement and stress components of the FG-CNTRC layered plates are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lau KT, Hui D (2002) The revolutionary creation of new advanced materials-carbon nanotube composites. Compos Part B Eng 33:263–277

    Article  Google Scholar 

  2. Sun CH, Li F, Cheng HM, Lu GQ (2005) Axial Young’s modulus prediction of single walled carbon nanotube arrays with diameters from nanometer to meter scales. Appl Phys Lett 87:193101–193103

    Article  ADS  Google Scholar 

  3. Song YS, Youn JR (2006) Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer 47:1741–1748

    Article  Google Scholar 

  4. Anumandla V, Gibson RF (2006) A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Compos Part A 37:2178–2185

    Article  Google Scholar 

  5. Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28:2394–2401

    Article  Google Scholar 

  6. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  Google Scholar 

  7. Chou TW, Gao L, Thostenson ET, Zhang Z, Byun JH (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70:1–19

    Article  Google Scholar 

  8. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  ADS  Google Scholar 

  9. Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech Mater 38:884–907

    Article  Google Scholar 

  10. Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos Struct 91:9–19

    Article  Google Scholar 

  11. Shen HS, Zhang CL (2010) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Des 31:3403–3411

    Article  Google Scholar 

  12. Shen HS, Zhu ZH (2010) Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments. Mater Continua 25:809–820

    Google Scholar 

  13. Wang ZX, Shen HS (2011) Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput Mater Sci 50:2319–2330

    Article  Google Scholar 

  14. Wang ZX, Shen HS (2012) Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos Part B Eng 43:411–421

    Article  Google Scholar 

  15. Wang ZX, Shen HS (2012) Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn 70:735–754

    Article  Google Scholar 

  16. Shen HS, Zhang CL (2012) Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part I: theory and solutions. Int J Non-Linear Mech 47:1045–1054

    Article  Google Scholar 

  17. Shen HS, Zhang CL (2012) Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part II: numerical results. Int J Non-Linear Mech 47:1055–1064

    Article  Google Scholar 

  18. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460

    Article  Google Scholar 

  19. Lei ZX, Liew KM, Yu JL (2013) Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos Struct 106:128–138

    Article  ADS  Google Scholar 

  20. Lei ZX, Liew KM, Yu JL (2013) Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method. Comput Method Appl Mech Eng 256:189–199

    Article  ADS  MathSciNet  Google Scholar 

  21. Lei ZX, Liew KM, Yu JL (2013) Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Compos Struct 98:160–168

    Article  Google Scholar 

  22. Zhu P, Zhang LW, Liew KM (2014) Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation. Compos Struct 107:298–314

    Article  Google Scholar 

  23. Lei ZX, Zhang LW, Liew KM, Yu JL (2014) Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method. Compos Struct 113:328–338

    Article  Google Scholar 

  24. Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos Struct 111:205–212

    Article  Google Scholar 

  25. Liew KM, Lei ZX, Yu JL, Zhang LW (2014) Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput Method Appl Mech Eng 268:1–17

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput Method Appl Mech Eng 273:1–18

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Liew KM, Zhao X, Ferreira AJM (2011) A review of meshless methods for laminated and functionally graded plates and shells. Compos Struct 93:2031–2041

    Article  Google Scholar 

  28. Zhang LW, Deng YJ, Liew KM (2014) An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng Anal Bound Elem 40:181–188

    Article  MATH  MathSciNet  Google Scholar 

  29. Cheng RJ, Zhang LW, Liew KM (2014) Modeling of biological population problems using the element-free kp-Ritz method. Appl Math Comput 227:274–290

    Article  MathSciNet  Google Scholar 

  30. Zhang LW, Zhu P, Liew KM (2014) Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos Struct 108:472–492

    Article  Google Scholar 

  31. Shen HS (2012) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced cylindrical shells. Compos Part B Eng 43:1030–1038

    Article  Google Scholar 

  32. Shen HS, Xiang Y (2012) Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput Method Appl Mech Eng 213–216:196–205

    Article  MathSciNet  Google Scholar 

  33. Malekzadeh P, Shojaee M (2013) Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin-walled Struct 71:108–118

    Article  Google Scholar 

  34. Malekzadeh P, Zarei AR (2014) Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin-walled Struct 82:221–232

    Article  Google Scholar 

  35. Setoodeh AR, Tahani M, Selahi E (2011) Hybrid layerwise-differential quadrature transient dynamic analysis of functionally graded axisymmetric cylindrical shells subjected to dynamic pressure. Compos Struct 93:2663–2670

    Article  Google Scholar 

  36. Golbahar Haghighi MR, Malekzadeh P, Rahideh H, Vaghefi M (2012) Inverse transient heat conduction problems of a multilayered functionally graded cylinder. Numer Heat Transf A-Appl 61:717–733

    Article  Google Scholar 

  37. Malekzadeh P, Heydarpour Y, Golbahar Haghighi MR, Vaghefi M (2012) Transient response of rotating laminated functionally graded cylindrical shells in thermal environment. Int J Press Vessel Pip 98:43–56

    Article  Google Scholar 

  38. Tornabene F, Liverani A, Caligiana G (2012) Laminated composite rectangular and annular plates: a GDQ solution for static analysis with a posteriori shear and normal stress recovery. Compos Part B Eng 43:1847–1872

    Article  Google Scholar 

  39. Malekzadeh P, Safaeean Hamzehkolaei N (2013) A 3D discrete layer-differential quadrature free vibration of multi-layered FG annular plates in thermal environment. Mech Adv Mater Struct 20:316–330

    Article  Google Scholar 

  40. Reddy JN (2004) Mechanics of laminated composite plates theory and analysis, 2nd edn. CRC, Boca Raton

    MATH  Google Scholar 

  41. Matsunaga H (2009) Stress analysis of functionally graded plates subjected to thermal and mechanical loadings. Compos Struct 87:344–357

    Article  Google Scholar 

  42. Matsunaga H (2008) Free vibration and stability of functionally graded plates according to a 2D higher-order deformation theory. Compos Struct 82:5–499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Malekzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekzadeh, P., Heydarpour, Y. Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates. Meccanica 50, 143–167 (2015). https://doi.org/10.1007/s11012-014-0061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0061-4

Keywords

Navigation