Skip to main content
Log in

Flexural vibrations of nonlinearly elastic circular rings

  • Advances in Dynamics, Stability and Control of Mechanical Systems
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper treats free nonlinear flexural vibrations of circular elastic rings in the context of a geometrically exact formulation accounting for the effects of nonlinear material behavior. A direct asymptotic approach based on the method of multiple scales is used to investigate such vibrations. It is shown that the flexural motions are softening for linearly elastic rings, in agreement with previous results in the literature, while there are nonlinearly elastic rings for which the motions are hardening. There are thresholds in the nonlinear constitutive laws separating softening from hardening behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amabili M, Païdoussis MP (2003) Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl Mech Rev 56(4):349–356

    Article  ADS  Google Scholar 

  2. Antman SS (2011) Breathing oscillations of rotating nonlinearly elastic and viscoelastic rings. In: Durban D, Givoli D, Simmonds JG (eds) Advances in the mechanics of plates and shells. Kluwer, Boston, pp 1–16

    Google Scholar 

  3. Antman SS (2005) Nonlinear problems of elasticity, 2nd edn. Springer, New York

    MATH  Google Scholar 

  4. Antman SS, Calderer MC (1987) Asymptotic shapes of inflated noncircular elastic rings. In: Mathematical proceedings of the Cambridge Philosophical Society, vol. 97, pp 357–379. Corrigendum, ibid. 101, 383

  5. Antman SS, Lacarbonara W (2009) Forced radial motions of nonlinearly viscoelastic cylindrical and spherical shells. J Elast 96:155–190

    Article  MATH  MathSciNet  Google Scholar 

  6. Caflisch RE, Maddocks JH (1984) Nonlinear dynamical theory of the elastica. Proc R Soc Edinb A 99:1–23

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen JC, Babcock CD (1975) Nonlinear vibration of cylindrical shells. AIAA J 13:868–876

    Article  ADS  MATH  Google Scholar 

  8. Chin CM, Nayfeh AH (1996) Bifurcation and chaos in externally excited circular cylindrical shells. J Appl Mech Trans ASME 63(3):565–574

    Article  MATH  MathSciNet  Google Scholar 

  9. Chu HN (1961) Influence of large amplitude on flexural vibrations of a thin circular cylindrical shell. J Aerosp Sci 28:602–609

    Article  MATH  Google Scholar 

  10. Dowell EH (1967) On the nonlinear fluexural vibrations of rings. AIAA J 5(8):1508–1509

    Article  ADS  MATH  Google Scholar 

  11. Evensen DA (1963) Some observations on the nonlinear vibration of thin cylindrical shells. AIAA J 1:2857–2858

    Article  Google Scholar 

  12. Evensen DA (1965) A theoretical and experimental study of the nonlinear flexural vibrations of thin circular rings. Technical Report TR R-227, NASA

  13. Evensen DA (1966) Nonlinear flexural vibrations of thin circular rings. ASME J Appl Mech 33:553–560

    Article  Google Scholar 

  14. Evensen DA (1968) Nonlinear vibrations of an infinitely long cylindrical shell. AIAA J 6(7):1401–1403

    Article  ADS  MATH  Google Scholar 

  15. Ganapathi M, Patel BP, Makhecha DP (2003) Nonlinear free flexural vibration of oval rings. J Appl Mech 70:774–777

    Article  MATH  Google Scholar 

  16. Lacarbonara W, Antman SS (2007) Parametric resonances of nonlinearly viscoelastic rings subject to a pulsating pressure. In: 21st ASME IDETC, DETC2007-35245. Las Vegas, Nevada, USA

  17. Lacarbonara W, Antman SS (2012) Parametric instabilities of the radial motions of nonlinearly viscoelastic shells subject to pulsating pressures. J Elast 47:461–472

    Google Scholar 

  18. Lacarbonara W, Camillacci R (2004) Nonlinear normal modes of structural systems via asymptotic approach. Int J Solids Struct 41:5565–5594

    Article  MATH  Google Scholar 

  19. Manevich AI (1994) Interaction of coupled modes accompanying non-linear flexural vibrations of a circular ring. J Appl Math Mech 58:1061–1068

    Article  MATH  MathSciNet  Google Scholar 

  20. Martynenko Y, Merkuryev IV, Podalkov VV (2008) Control of nonlinear vibrations of vibrating ring microgyroscope. Mech Solids 43(3):379–390

    Article  Google Scholar 

  21. Nayfeh A, Raouf RA (1987) Non-linear oscillation of circular cylindrical shells. Int J Solids Struct 23(12):1625–1638

    Article  MATH  MathSciNet  Google Scholar 

  22. Nayfeh AH (2000) Nonlinear interactions: analytical, computational, and experimental methods. Wiley-Interscience, Hoboken

    Google Scholar 

  23. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

  24. Nayfeh AH, Nayfeh SA (1994) On nonlinear modes of continuous systems. J Vib Acoust 116:129–136

    Article  Google Scholar 

  25. Nayfeh AH, Nayfeh SA (1995) Nonlinear normal modes of a continuous system with quadratic nonlinearities. J Vib Acoust 117:199–205

    Article  Google Scholar 

  26. Nayfeh AH, Raouf RA, Nayfeh JF (1991) Nonlinear response of infinitely long circular cylindrical shells to subharmonic radial loads. J Appl Mech 58(4):1033–1041

    Article  MATH  Google Scholar 

  27. Nowinski JL (1963) Nonlinear transverse vibrations of orthotropic cylindrical shells. AIAA J 1:617–620

    Article  Google Scholar 

  28. Patel BP, Ganapathi M, Makhecha DP, Shah P (2003) Large amplitude free fexural vibration of rings using finite element approach. Int J Non-Linear Mech 37:911–921

    Article  Google Scholar 

  29. Rand RH (1974) A direct method for non-linear normal modes. Int J Non-Linear Mech 9:363–368

    Article  MATH  Google Scholar 

  30. Raouf R, Nayfeh AH (1990) One-to-one autoparametric resonances in infinitely long cylindrical shells. Comput Struct 35(2):163–173

    Article  Google Scholar 

  31. Rosenberg RM (1962) The normal modes of nonlinear n-degree-of-freedom systems. J Appl Mech 30:7–14

    Article  Google Scholar 

  32. Rougui M, Karimin A, Belhaq M (2008) Nonlinear flexural vibration of a circular ring. a single mode approach. Chaos Solitons Fract 37:1143–1152

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Sathyamoorthy M, Pandalai KAV (1971) Nonlinear flexural vibrations of oval rings. J Aeronaut Soc India 23:1–12

    Google Scholar 

  34. Tsuchiya T, Hirata M, Chiba N, Udo R, Yoshitomi Y, Ando T, Sato K, Takashima K, Higo Y, Saotome Y, Ogawa H, Ozaki K (2005) Cross comparison of thin-film tensile-testing methods examined using single-crystal silicon, polysilicon, nickel, and titanium films. J Microelectromech Syst 14(5):1178–1186

    Article  Google Scholar 

  35. Vakakis AF, Mikhlin LI, Pilipchuk YV, Zevin AA (1996) Normal modes and localization in nonlinear systems. Wiley, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The financial support of Lacarbonara and Arena through a 2010-2011 MIUR (Italian Ministry of Education, University and Scientific Research) PRIN Grant is gratefully acknowledged. The work of Antman was partially supported by a grant from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Lacarbonara.

Appendix

Appendix

The expressions of the integrand functions appearing in the effective nonlinearity coefficient (42) are given next.

$${{\varUpsilon }_{0m}^{\varphi }}^{(2)}= \gamma _{01m}' \left( 3 \psi _m''+\psi _m''''+2 \varphi _m'\right) +2 \gamma _{02m}' \left( 3 \psi _m''+\psi _m''''+2 \varphi _m'\right) +3 \gamma _{01m}'' \psi _m'+6 \gamma _{02m}'' \psi _m'+\gamma _{01m}'''' \psi _m'+2 \gamma _{02m}'''' \psi _m'+\psi _m''' \gamma _{01m}''+2 \psi _m''' \gamma _{02m}''+\gamma _{01m}''' \psi _m''+2 \gamma _{02m}''' \psi _m''+2 \gamma _{01m} \psi _m'''+4 \gamma _{02m} \psi _m'''+2 \gamma _{01m}''' \psi _m+4 \gamma _{02m}''' \psi _m+2 \phi _{01m}' \psi _m'-\psi _m''' \phi _{01m}'+4 \phi _{02m}' \psi _m' -2 \psi _m''' \phi _{02m}'+\phi _{01m} \psi _m''+2 \phi _{02m} \psi _m''+2 \psi _m \phi _{01m}''-\phi _{01m}'' \psi _m'' +4 \psi _m \phi _{02m}''-2 \phi _{02m}'' \psi _m''+\phi _{01m} \psi _m''''+2 \phi _{02m} \psi _m''''-\gamma _{01m}''' \varphi _m' -2 \gamma _{02m}''' \varphi _m'+\varphi _m \gamma _{01m}''+2 \varphi _m \gamma _{02m}''+2 \gamma _{01m} \varphi _m''+4 \gamma _{02m} \varphi _m''-\gamma _{01m}'' \varphi _m''-2 \gamma _{02m}'' \varphi _m''+\gamma _{01m}'''' \varphi _m+2 \gamma _{02m}'''' \varphi _m -3 \phi _{01m}' \varphi _m''-6 \phi _{02m}' \varphi _m''-3 \phi _{01m}'' \varphi _m'-6 \phi _{02m}'' \varphi _m' $$
(48)
$${{\varUpsilon }_{0m}^{\psi }}^{(2)}=-4 \psi _m''' \gamma _{01m}'-8 \psi _m''' \gamma _{02m}'-4 \gamma _{01m}''' \psi _m'-8 \gamma _{02m}''' \psi _m'-6 \gamma _{01m}'' \psi _m''-12 \gamma _{02m}'' \psi _m''-2 \gamma _{01m} \psi _m''''-4 \gamma _{02m} \psi _m''''-2 \gamma _{01m}'''' \psi _m-4 \gamma _{02m}'''' \psi _m;+\phi _{01m}' \left( -3 \psi _m''+2 \psi _m''''+5 \varphi _m'''\right) +\phi _{02m}' \left( -6 \psi _m''+4 \psi _m''''+10 \varphi _m'''\right) -3 \phi _{01m}'' \psi _m'-6 \phi _{02m}'' \psi _m'+\phi _{01m}'''' \psi _m'+2 \phi _{02m}'''' \psi _m'+4 \psi _m''' \phi _{01m}'';+8 \psi _m''' \phi _{02m}''+3 \phi _{01m}''' \psi _m''+6 \phi _{02m}''' \psi _m''-2 \phi _{01m}''' \psi _m-4 \phi _{02m}''' \psi _m;-3 \gamma _{01m}'' \varphi _m'-6 \gamma _{02m}'' \varphi _m'-3 \gamma _{01m}' \varphi _m''-6 \gamma _{02m}' \varphi _m'';+2 \gamma _{01m}'''' \varphi _m'+4 \gamma _{02m}'''' \varphi _m'+\varphi _m'''' \gamma _{01m}'+2 \varphi _m'''' \gamma _{02m}'+3 \varphi _m''' \gamma _{01m}''+4 \gamma _{01m}''' \varphi _m''+8 \gamma _{02m}''' \varphi _m''+6 \varphi _m''' \gamma _{02m}'';-2 \gamma _{01m} \varphi _m'''-4 \gamma _{02m} \varphi _m'''+5 \phi _{01m}''' \varphi _m'+10 \phi _{02m}''' \varphi _m'+\phi _{01m} \varphi _m'';+2 \phi _{02m} \varphi _m''+\varphi _m \phi _{01m}''+8 \phi _{01m}'' \varphi _m''+2 \varphi _m \phi _{02m}''+16 \phi _{02m}'' \varphi _m'';+\phi _{01m} \varphi _m''''+2 \phi _{02m} \varphi _m''''+\phi _{01m}'''' \varphi _m+2 \phi _{02m}'''' \varphi _m $$
(49)
$${{\varUpsilon }_{1m}^{\varphi }}^{(2)}=\gamma _{01m} \left( \psi _m'+\varphi _m\right) +2 \gamma _{02m} \left( \psi _m'+\varphi _m\right) +\gamma _{01m}' \psi _m''+2 \gamma _{02m}' \psi _m''+\gamma _{01m}'' \psi _m'+2 \gamma _{02m}'' \psi _m'+\psi _m \gamma _{01m}'+2 \psi _m \gamma _{02m}'+3 \gamma _{11m}' \psi _m''+6 \gamma _{12m}' \psi _m''+3 \gamma _{11m}'' \psi _m'+6 \gamma _{12m}'' \psi _m'+\psi _m'''' \gamma _{11m}'+2 \psi _m'''' \gamma _{12m}'+\gamma _{11m}'''' \psi _m'+2 \gamma _{12m}'''' \psi _m'+\psi _m''' \gamma _{11m}''+2 \psi _m''' \gamma _{12m}''+\gamma _{11m}''' \psi _m''+2 \gamma _{12m}''' \psi _m''+2 \gamma _{11m} \psi _m'''+4 \gamma _{12m} \psi _m'''+2 \gamma _{11m}''' \psi _m+4 \gamma _{12m}''' \psi _m+\phi _{01m} \psi _m''+2 \phi _{02m} \psi _m''+\phi _{01m} \psi _m+2 \phi _{02m} \psi _m+2 \phi _{11m}' \psi _m'+4 \phi _{12m}' \psi _m'-\psi _m''' \phi _{11m}'-2 \psi _m''' \phi _{12m}'+\phi _{11m} \psi _m''+2 \phi _{12m} \psi _m''+2 \psi _m \phi _{11m}''-\phi _{11m}'' \psi _m''+4 \psi _m \phi _{12m}''-2 \phi _{12m}'' \psi _m''+\phi _{11m} \psi _m''''+2 \phi _{12m} \psi _m''''+\varphi _m \gamma _{01m}''+2 \varphi _m \gamma _{02m}''+2 \gamma _{11m}' \varphi _m'+4 \gamma _{12m}' \varphi _m'-\gamma _{11m}''' \varphi _m'-2 \gamma _{12m}''' \varphi _m'+\varphi _m \gamma _{11m}''+2 \varphi _m \gamma _{12m}''+2 \gamma _{11m} \varphi _m''+4 \gamma _{12m} \varphi _m''-\gamma _{11m}'' \varphi _m''-2 \gamma _{12m}'' \varphi _m''+\gamma _{11m}'''' \varphi _m+2 \gamma _{12m}'''' \varphi _m-3 \phi _{11m}' \varphi _m''-6 \phi _{12m}' \varphi _m''-3 \phi _{11m}'' \varphi _m'-6 \phi _{12m}'' \varphi _m' $$
(50)
$${{\varUpsilon }_{1m}^{\psi }}^{(2)}=-\gamma _{01m} \varphi _m'-2 \gamma _{02m} \varphi _m'+2 \phi _{01m}' \varphi _m'+4 \phi _{02m}' \varphi _m'+\gamma _{01m}'' \varphi _m'+2 \gamma _{02m}'' \varphi _m'-3 \gamma _{11m}'' \varphi _m'-6 \gamma _{12m}'' \varphi _m'+5 \phi _{11m}''' \varphi _m'+10 \phi _{12m}''' \varphi _m'+2 \gamma _{11m}'''' \varphi _m'+4 \gamma _{12m}'''' \varphi _m'-\psi _m \phi _{01m}'-2 \psi _m \phi _{02m}'-\gamma _{01m} \psi _m''-2 \gamma _{02m} \psi _m''+\phi _{01m}' \psi _m''+2 \phi _{02m}' \psi _m''-3 \phi _{11m}' \psi _m''-6 \phi _{12m}' \psi _m''-\psi _m \gamma _{01m}''-2 \psi _m \gamma _{02m}''-6 \psi _m'' \gamma _{11m}''-12 \psi _m'' \gamma _{12m}''+\phi _{01m} \varphi _m''+2 \phi _{02m} \varphi _m''+\phi _{11m} \varphi _m''+2 \phi _{12m} \varphi _m''+\gamma _{01m}' \varphi _m''+2 \gamma _{02m}' \varphi _m''-3 \gamma _{11m}' \varphi _m''-6 \gamma _{12m}' \varphi _m''+8 \varphi _m'' \phi _{11m}''+16 \varphi _m'' \phi _{12m}''-4 \gamma _{11m}' \psi _m'''-8 \gamma _{12m}' \psi _m'''+4 \phi _{11m}'' \psi _m'''+8 \phi _{12m}'' \psi _m'''+4 \varphi _m'' \gamma _{11m}'''+8 \varphi _m'' \gamma _{12m}'''-2 \gamma _{11m} \varphi _m'''-4 \gamma _{12m} \varphi _m'''+5 \phi _{11m}' \varphi _m'''+10 \phi _{12m}' \varphi _m'''+3 \gamma _{11m}'' \varphi _m'''+6 \gamma _{12m}'' \varphi _m'''-2 \psi _m \phi _{11m}'''+3 \psi _m'' \phi _{11m}'''-4 \psi _m \phi _{12m}'''+6 \psi _m'' \phi _{12m}'''-2 \gamma _{11m} \psi _m''''-4 \gamma _{12m} \psi _m''''+2 \phi _{11m}' \psi _m''''+4 \phi _{12m}' \psi _m''''-2 \psi _m \gamma _{11m}''''-4 \psi _m \gamma _{12m}''''+\phi _{11m} \varphi _m''''+2 \phi _{12m} \varphi _m''''+\gamma _{11m}' \varphi _m''''+2 \gamma _{12m}' \varphi _m''''+\varphi _m \left( \phi _{01m}+2 \phi _{02m}+\phi _{01m}''+2 \phi _{02m}''\right. \left. +\phi _{11m}''+2 \phi _{12m}''+\phi _{11m}''''+2 \phi _{12m}''''\right) +\psi _m' \left( -\gamma _{01m}'-2 \gamma _{02m}'+\phi _{01m}''\right. \left. +2 \phi _{02m}''-3 \phi _{11m}''-6 \phi _{12m}''-4 \gamma _{11m}'''-8 \gamma _{12m}'''+\phi _{11m}''''+2 \phi _{12m}''''\right) $$
(51)
$${{\varUpsilon }_{2m}^{\varphi }}^{(2)}=\gamma _{11m} \left( \psi _m'+\varphi _m\right) +2 \gamma _{12m} \left( \psi _m'+\varphi _m\right) +\gamma _{11m}' \psi _m''+2 \gamma _{12m}' \psi _m''+\gamma _{11m}'' \psi _m'+2 \gamma _{12m}'' \psi _m'+\psi _m \gamma _{11m}'+2 \psi _m \gamma _{12m}'+\phi _{11m} \psi _m''+2 \phi _{12m} \psi _m''+\phi _{11m} \psi _m+2 \phi _{12m} \psi _m+\varphi _m \gamma _{11m}''+2 \varphi _m \gamma _{12m}'' $$
(52)
$${{\varUpsilon }_{2m}^{\psi }}^{(2)}=\psi _m' \left( -\gamma _{11m}'-2 \gamma _{12m}'+\phi _{11m}''+2 \phi _{12m}''\right) -\gamma _{11m} \psi _m''-2 \gamma _{12m} \psi _m''-\psi _m \gamma _{11m}''-2 \psi _m \gamma _{12m}''+\phi _{11m}' \psi _m''+2 \phi _{12m}' \psi _m''-\psi _m \phi _{11m}'-2 \psi _m \phi _{12m}'+\gamma _{11m}'' \varphi _m'+2 \gamma _{12m}'' \varphi _m'+\gamma _{11m}' \varphi _m''+2 \gamma _{12m}' \varphi _m''-\gamma _{11m} \varphi _m'-2 \gamma _{12m} \varphi _m'+2 \phi _{11m}' \varphi _m'+4 \phi _{12m}' \varphi _m'+\phi _{11m} \varphi _m''+2 \phi _{12m} \varphi _m''+\varphi _m \left( \phi _{11m}''+2 \phi _{12m}''+\phi _{11m}+2 \phi _{12m}\right) $$
(53)
$${{\varUpsilon }_{3m}^{\varphi }}^{(2)}=2 \psi _m''' \gamma _{11m}''+4 \psi _m''' \gamma _{12m}''+2 \gamma _{11m}''' \psi _m''+4 \gamma _{12m}''' \psi _m''+\gamma _{21m}' \psi _m''+2 \gamma _{22m}' \psi _m''+\gamma _{21m}'' \psi _m'+2 \gamma _{22m}'' \psi _m'+\gamma _{21m} \psi _m'+2 \gamma _{22m} \psi _m'+\psi _m \gamma _{21m}'+2 \psi _m \gamma _{22m}'+2 \psi _m''' \phi _{11m}'+4 \psi _m''' \phi _{12m}'+2 \phi _{11m}'' \psi _m''+4 \phi _{12m}'' \psi _m''+\phi _{21m} \psi _m''+2 \phi _{22m} \psi _m''+\phi _{21m} \psi _m+2 \phi _{22m} \psi _m+2 \gamma _{11m}''' \varphi _m'+4 \gamma _{12m}''' \varphi _m'+2 \gamma _{11m}'' \varphi _m''+4 \gamma _{12m}'' \varphi _m''+\varphi _m \gamma _{21m}''+2 \varphi _m \gamma _{22m}''+\gamma _{21m} \varphi _m+2 \gamma _{22m} \varphi _m+2 \phi _{11m}' \varphi _m''+4 \phi _{12m}' \varphi _m''+2 \phi _{11m}'' \varphi _m'+4 \phi _{12m}'' \varphi _m' $$
(54)
$${{\varUpsilon }_{3m}^{\psi }}^{(2)}=-2 \psi _m'''' \gamma _{11m}''-4 \psi _m'''' \gamma _{12m}''-2 \gamma _{11m}'''' \psi _m''-4 \gamma _{12m}'''' \psi _m''-4 \gamma _{11m}''' \psi _m'''-8 \gamma _{12m}''' \psi _m'''-\gamma _{21m}' \psi _m'-2 \gamma _{22m}' \psi _m'-\gamma _{21m} \psi _m''-2 \gamma _{22m} \psi _m''-\psi _m \gamma _{21m}''-2 \psi _m \gamma _{22m}''-2 \psi _m'''' \phi _{11m}'-4 \psi _m'''' \phi _{12m}'-4 \psi _m''' \phi _{11m}''-8 \psi _m''' \phi _{12m}''-2 \phi _{11m}''' \psi _m''-4 \phi _{12m}''' \psi _m''+\phi _{21m}' \psi _m''+2 \phi _{22m}' \psi _m''+\phi _{21m}'' \psi _m'+2 \phi _{22m}'' \psi _m'-\psi _m \phi _{21m}'-2 \psi _m \phi _{22m}'-2 \gamma _{11m}'''' \varphi _m'-4 \gamma _{12m}'''' \varphi _m'-4 \gamma _{11m}''' \varphi _m''-8 \gamma _{12m}''' \varphi _m''-2 \varphi _m''' \gamma _{11m}''-4 \varphi _m''' \gamma _{12m}''+\gamma _{21m}'' \varphi _m'+2 \gamma _{22m}'' \varphi _m'+\gamma _{21m}' \varphi _m''+2 \gamma _{22m}' \varphi _m''-\gamma _{21m} \varphi _m'-2 \gamma _{22m} \varphi _m'-2 \varphi _m''' \phi _{11m}'-4 \varphi _m''' \phi _{12m}'-2 \phi _{11m}''' \varphi _m'-4 \phi _{12m}''' \varphi _m'-4 \phi _{11m}'' \varphi _m''-8 \phi _{12m}'' \varphi _m''+2 \phi _{21m}' \varphi _m'+4 \phi _{22m}' \varphi _m'+\phi _{21m} \varphi _m''+2 \phi _{22m} \varphi _m''+\varphi _m \phi _{21m}''+2 \varphi _m \phi _{22m}''+\phi _{21m} \varphi _m+2 \phi _{22m} \varphi _m $$
(55)
$${{\varUpsilon }_{4m}^{\varphi }}^{(2)}=2 \gamma _{21m}' \varphi _m'+4 \gamma _{22m}' \varphi _m'+2 \phi _{01m}'' \varphi _m'+4 \phi _{02m}'' \varphi _m'-3 \phi _{21m}'' \varphi _m'-6 \phi _{22m}'' \varphi _m'+2 \gamma _{01m}''' \varphi _m'+4 \gamma _{02m}''' \varphi _m'-\gamma _{21m}''' \varphi _m'-2 \gamma _{22m}''' \varphi _m'+2 \psi _m' \phi _{21m}'+4 \psi _m' \phi _{22m}'+\phi _{21m} \psi _m''+2 \phi _{22m} \psi _m''+3 \gamma _{21m}' \psi _m''+6 \gamma _{22m}' \psi _m''+\varphi _m \gamma _{21m}''+3 \psi _m' \gamma _{21m}''+2 \varphi _m \gamma _{22m}''+6 \psi _m' \gamma _{22m}''+2 \gamma _{21m} \varphi _m''+4 \gamma _{22m} \varphi _m''+2 \phi _{01m}' \varphi _m''+4 \phi _{02m}' \varphi _m''-3 \phi _{21m}' \varphi _m''-6 \phi _{22m}' \varphi _m''+2 \gamma _{01m}'' \varphi _m''+4 \gamma _{02m}'' \varphi _m''-\gamma _{21m}'' \varphi _m''-2 \gamma _{22m}'' \varphi _m''+2 \psi _m'' \phi _{01m}''+4 \psi _m'' \phi _{02m}''+2 \psi _m \phi _{21m}''-\psi _m'' \phi _{21m}''+4 \psi _m \phi _{22m}''-2 \psi _m'' \phi _{22m}''+2 \gamma _{21m} \psi _m'''+4 \gamma _{22m} \psi _m'''+2 \phi _{01m}' \psi _m'''+4 \phi _{02m}' \psi _m'''-\phi _{21m}' \psi _m'''-2 \phi _{22m}' \psi _m'''+2 \gamma _{01m}'' \psi _m'''+4 \gamma _{02m}'' \psi _m'''+\gamma _{21m}'' \psi _m'''+2 \gamma _{22m}'' \psi _m'''+2 \psi _m'' \gamma _{01m}'''+4 \psi _m'' \gamma _{02m}'''+2 \psi _m \gamma _{21m}'''+\psi _m'' \gamma _{21m}'''+4 \psi _m \gamma _{22m}'''+2 \psi _m'' \gamma _{22m}'''+\phi _{21m} \psi _m''''+2 \phi _{22m} \psi _m''''+\gamma _{21m}' \psi _m''''+2 \gamma _{22m}' \psi _m''''+\varphi _m \gamma _{21m}''''+\psi _m' \gamma _{21m}''''+2 \varphi _m \gamma _{22m}''''+2 \psi _m' \gamma _{22m}'''' $$
(56)
$${{\varUpsilon }_{4m}^{\psi }}^{(2)}=-3 \phi _{21m}' \psi _m''-6 \phi _{22m}' \psi _m''-6 \gamma _{21m}'' \psi _m''-12 \gamma _{22m}'' \psi _m''-2 \phi _{01m}''' \psi _m''-4 \phi _{02m}''' \psi _m''+3 \phi _{21m}''' \psi _m''+6 \phi _{22m}''' \psi _m''-2 \gamma _{01m}'''' \psi _m''-4 \gamma _{02m}'''' \psi _m''-3 \varphi _m' \gamma _{21m}''-6 \varphi _m' \gamma _{22m}''+\phi _{21m} \varphi _m''+2 \phi _{22m} \varphi _m''-3 \gamma _{21m}' \varphi _m''-6 \gamma _{22m}' \varphi _m''-4 \varphi _m'' \phi _{01m}''-8 \varphi _m'' \phi _{02m}''+\varphi _m \phi _{21m}''-3 \psi _m' \phi _{21m}''+8 \varphi _m'' \phi _{21m}''+2 \varphi _m \phi _{22m}''-6 \psi _m' \phi _{22m}''+16 \varphi _m'' \phi _{22m}''-4 \gamma _{21m}' \psi _m'''-8 \gamma _{22m}' \psi _m'''-4 \phi _{01m}'' \psi _m'''-8 \phi _{02m}'' \psi _m'''+4 \phi _{21m}'' \psi _m'''+8 \phi _{22m}'' \psi _m'''-4 \varphi _m'' \gamma _{01m}'''-4 \psi _m''' \gamma _{01m}'''-8 \varphi _m'' \gamma _{02m}'''-8 \psi _m''' \gamma _{02m}'''-4 \psi _m' \gamma _{21m}'''+4 \varphi _m'' \gamma _{21m}'''-8 \psi _m' \gamma _{22m}'''+8 \varphi _m'' \gamma _{22m}'''-2 \gamma _{21m} \varphi _m'''-4 \gamma _{22m} \varphi _m'''-2 \phi _{01m}' \varphi _m'''-4 \phi _{02m}' \varphi _m'''+5 \phi _{21m}' \varphi _m'''+10 \phi _{22m}' \varphi _m'''-2 \gamma _{01m}'' \varphi _m'''-4 \gamma _{02m}'' \varphi _m'''+3 \gamma _{21m}'' \varphi _m'''+6 \gamma _{22m}'' \varphi _m'''-2 \varphi _m' \phi _{01m}'''-4 \varphi _m' \phi _{02m}'''-2 \psi _m \phi _{21m}'''+5 \varphi _m' \phi _{21m}'''-4 \psi _m \phi _{22m}'''+10 \varphi _m' \phi _{22m}'''-2 \gamma _{21m} \psi _m''''-4 \gamma _{22m} \psi _m''''-2 \phi _{01m}' \psi _m''''-4 \phi _{02m}' \psi _m''''+2 \phi _{21m}' \psi _m''''+4 \phi _{22m}' \psi _m''''-2 \gamma _{01m}'' \psi _m''''-4 \gamma _{02m}'' \psi _m''''-2 \varphi _m' \gamma _{01m}''''-4 \varphi _m' \gamma _{02m}''''-2 \psi _m \gamma _{21m}''''+2 \varphi _m' \gamma _{21m}''''-4 \psi _m \gamma _{22m}''''+4 \varphi _m' \gamma _{22m}''''+\phi _{21m} \varphi _m''''+2 \phi _{22m} \varphi _m''''+\gamma _{21m}' \varphi _m''''+2 \gamma _{22m}' \varphi _m''''+\varphi _m \phi _{21m}''''+\psi _m' \phi _{21m}''''+2 \varphi _m \phi _{22m}''''+2 \psi _m' \phi _{22m}'''' $$
(57)
$${{\varUpsilon }_{5m}^{\varphi }}^{(2)}=2 \left[ \psi _m''' \gamma _{21m}''+2 \psi _m''' \gamma _{22m}''+\gamma _{21m}''' \psi _m''+2 \gamma _{22m}''' \psi _m''\right. +\phi _{21m}' \left( \psi _m'''+\varphi _m''\right) +2 \phi _{22m}' \left( \psi _m'''+\varphi _m''\right) +\phi _{21m}'' \psi _m''+2 \phi _{22m}'' \psi _m''+\gamma _{21m}''' \varphi _m'+2 \gamma _{22m}''' \varphi _m'+\gamma _{21m}'' \varphi _m''\left. +2 \gamma _{22m}'' \varphi _m''+\phi _{21m}'' \varphi _m'+2 \phi _{22m}'' \varphi _m'\right] $$
(58)
$${{\varUpsilon }_{5m}^{\psi }}^{(2)}=-2 \left[ \psi _m'''' \gamma _{21m}''+2 \psi _m'''' \gamma _{22m}''+\gamma _{21m}'''' \psi _m''+2 \gamma _{22m}'''' \psi _m''+2 \gamma _{21m}''' \psi _m'''\right. +4 \gamma _{22m}''' \psi _m'''+\psi _m'''' \phi _{21m}'+2 \psi _m'''' \phi _{22m}'+2 \psi _m''' \phi _{21m}''+4 \psi _m''' \phi _{22m}''+\phi _{21m}''' \psi _m''+2 \phi _{22m}''' \psi _m''+2 \varphi _m'' \left( \gamma _{21m}'''+2 \gamma _{22m}'''+\phi _{21m}''+2 \phi _{22m}''\right) +\gamma _{21m}'''' \varphi _m'+2 \gamma _{22m}'''' \varphi _m'+\varphi _m''' \gamma _{21m}''+2 \varphi _m''' \gamma _{22m}''\left. +\varphi _m''' \phi _{21m}'+2 \varphi _m''' \phi _{22m}'+\phi _{21m}''' \varphi _m'+2 \phi _{22m}''' \varphi _m'\right]$$
(59)
$${{\varUpsilon }_{0m}^{\varphi }}^{(3)}=-3 \psi _m'{}^2 \varphi _m''-9 \psi _m' \varphi _m''{}^2-15 \psi _m' \psi _m'' \varphi _m'-9 \varphi _m \psi _m' \varphi _m''-15 \psi _m''' \psi _m' \varphi _m''-12 \varphi _m''' \psi _m' \psi _m''-9 \varphi _m \psi _m'' \varphi _m'-27 \psi _m \varphi _m' \varphi _m''-3 \psi _m'' \varphi _m' \varphi _m''-9 \psi _m''' \psi _m'' \varphi _m'+6 \varphi _m \psi _m'{}^2-3 \varphi _m'''' \psi _m'{}^2-18 \psi _m' \varphi _m'{}^2+18 \psi _m \psi _m' \varphi _m'+9 \psi _m''' \varphi _m \psi _m'-12 \varphi _m''' \psi _m' \varphi _m'-9 \psi _m'''' \psi _m' \varphi _m'-6 \varphi _m \varphi _m'''' \psi _m'-9 \psi _m \psi _m''' \varphi _m'-9 \psi _m'''' \varphi _m \varphi _m'+6 \varphi _m \psi _m''{}^2+9 \psi _m \varphi _m \psi _m''+9 \psi _m{}^2 \varphi _m''-6 \psi _m''{}^2 \varphi _m''-9 \psi _m \psi _m'' \varphi _m''-15 \psi _m''' \varphi _m \varphi _m''-12 \varphi _m \varphi _m''' \psi _m''-3 \psi _m''' \varphi _m{}^2+9 \psi _m \psi _m'''' \varphi _m+12 \psi _m' \psi _m''{}^2+27 \psi _m \psi _m' \psi _m''+6 \psi _m'{}^3+12 \psi _m''' \psi _m'{}^2+9 \psi _m \psi _m'''' \psi _m'+9 \psi _m \psi _m''' \psi _m''+9 \psi _m{}^2 \psi _m'''+12 \varphi _m'{}^2 \varphi _m''-6 \varphi _m \varphi _m'{}^2-12 \varphi _m \varphi _m''' \varphi _m'-9 \varphi _m \varphi _m''{}^2-6 \varphi _m{}^2 \varphi _m''-3 \varphi _m{}^2 \varphi _m'''' $$
(60)
$${{\varUpsilon }_{0m}^{\psi }}^{(3)}=6 \varphi _m'{}^3+45 \psi _m'' \varphi _m'{}^2-36 \varphi _m''' \varphi _m'{}^2-9 \psi _m'''' \varphi _m'{}^2-18 \psi _m'{}^2 \varphi _m'+45 \psi _m''{}^2 \varphi _m'-60 \varphi _m''{}^2 \varphi _m'+6 \varphi _m \psi _m' \varphi _m'-27 \psi _m \psi _m'' \varphi _m'+9 \varphi _m \varphi _m'' \varphi _m'+93 \psi _m' \varphi _m'' \varphi _m'+24 \varphi _m \psi _m''' \varphi _m'+60 \psi _m' \psi _m''' \varphi _m'-36 \varphi _m'' \psi _m''' \varphi _m'+45 \psi _m \varphi _m''' \varphi _m'-27 \psi _m'' \varphi _m''' \varphi _m'+18 \psi _m \psi _m'''' \varphi _m'-9 \varphi _m \varphi _m'''' \varphi _m'-9 \psi _m' \varphi _m'''' \varphi _m'+6 \psi _m''{}^3-27 \psi _m \psi _m''{}^2+36 \psi _m \varphi _m''{}^2-24 \psi _m'' \varphi _m''{}^2+3 \varphi _m{}^2 \psi _m''-36 \psi _m'{}^2 \psi _m''-9 \varphi _m \psi _m' \psi _m''+9 \psi _m \varphi _m \varphi _m''-27 \psi _m \psi _m' \varphi _m''+39 \varphi _m \psi _m'' \varphi _m''+87 \psi _m' \psi _m'' \varphi _m''-36 \psi _m \psi _m' \psi _m'''+24 \varphi _m \psi _m'' \psi _m'''+24 \psi _m' \psi _m'' \psi _m'''+36 \psi _m \varphi _m'' \psi _m'''-9 \psi _m{}^2 \varphi _m'''+3 \varphi _m{}^2 \varphi _m'''+24 \psi _m'{}^2 \varphi _m'''+27 \varphi _m \psi _m' \varphi _m'''+27 \psi _m \psi _m'' \varphi _m'''-21 \varphi _m \varphi _m'' \varphi _m'''-21 \psi _m' \varphi _m'' \varphi _m'''-9 \psi _m{}^2 \psi _m''''+6 \varphi _m{}^2 \psi _m''''+6 \psi _m'{}^2 \psi _m''''+12 \varphi _m \psi _m' \psi _m''''+9 \psi _m \varphi _m \varphi _m''''+9 \psi _m \psi _m' \varphi _m'''' $$
(61)
$${{\varUpsilon }_{1m}^{\varphi }}^{(3)}=-6 \varphi _m \psi _m'' \varphi _m'-6 \varphi _m \psi _m' \varphi _m''-6 \psi _m' \psi _m'' \varphi _m'-3 \psi _m'{}^2 \varphi _m''-\frac{3}{2} \varphi _m{}^2 \psi _m'+\frac{3}{2} \varphi _m \psi _m'{}^2-3 \psi _m' \varphi _m'{}^2+6 \psi _m \varphi _m \psi _m''+3 \psi _m{}^2 \varphi _m+6 \psi _m \psi _m' \psi _m''+\frac{3}{2} \psi _m'{}^3+3 \psi _m{}^2 \psi _m'-3 \varphi _m \varphi _m'{}^2-3 \varphi _m{}^2 \varphi _m''-\frac{1}{2} 3 \varphi _m{}^3 $$
(62)
$${{\varUpsilon }_{1m}^{\psi }}^{(3)}=-3 \psi _m'' \varphi _m'{}^2+6 \psi _m \psi _m'' \varphi _m'-6 \psi _m' \varphi _m' \varphi _m''+9 \varphi _m \psi _m' \psi _m''+6 \psi _m \psi _m' \varphi _m''+6 \psi _m \varphi _m'{}^2-3 \psi _m{}^2 \varphi _m'+\frac{15}{2} \psi _m'{}^2 \varphi _m'+9 \varphi _m \psi _m' \varphi _m'+\frac{9}{2} \varphi _m{}^2 \psi _m''+6 \psi _m \varphi _m \varphi _m''+3 \psi _m \varphi _m{}^2+\frac{9}{2} \psi _m'{}^2 \psi _m''-3 \psi _m \psi _m'{}^2-3 \psi _m{}^2 \psi _m''-6 \varphi _m \varphi _m' \varphi _m''-3 \varphi _m'{}^3+\frac{3}{2} \varphi _m{}^2 \varphi _m' $$
(63)
$${{\varUpsilon }_{4m}^{\varphi }}^{(3)}=6 \psi _m'{}^2 \varphi _m''+30 \psi _m' \psi _m'' \varphi _m'+6 \varphi _m \psi _m' \varphi _m''+6 \psi _m''' \psi _m' \varphi _m''+6 \varphi _m \psi _m'' \varphi _m'+18 \psi _m \varphi _m' \varphi _m''-30 \psi _m'' \varphi _m' \varphi _m''-6 \psi _m''' \psi _m'' \varphi _m'+12 \psi _m' \varphi _m'{}^2+6 \psi _m''' \varphi _m \psi _m'+6 \psi _m'''' \psi _m' \varphi _m'-12 \psi _m''' \varphi _m'{}^2+18 \psi _m \psi _m''' \varphi _m'+6 \psi _m'''' \varphi _m \varphi _m'+6 \varphi _m \psi _m''{}^2-6 \psi _m''{}^2 \varphi _m''+18 \psi _m \psi _m'' \varphi _m''+6 \psi _m''' \varphi _m \varphi _m''+6 \psi _m'''' \varphi _m \psi _m''+6 \psi _m'''{}^2 \varphi _m+18 \psi _m' \psi _m''{}^2+6 \psi _m'''' \psi _m' \psi _m''+6 \psi _m''' \psi _m'{}^2+6 \psi _m'''{}^2 \psi _m'+6 \psi _m''' \psi _m''{}^2+18 \psi _m \psi _m''' \psi _m''-24 \varphi _m'{}^2 \varphi _m'' $$
(64)
$${{\varUpsilon }_{4m}^{\psi }}^{(3)}=-36 \psi _m''{}^2 \varphi _m'-18 \psi _m'' \varphi _m'{}^2-54 \psi _m' \psi _m'' \varphi _m''+54 \varphi _m''' \psi _m'' \varphi _m'+18 \psi _m'''' \psi _m'' \varphi _m'+6 \varphi _m'''' \psi _m' \psi _m''-42 \psi _m' \varphi _m' \varphi _m''+84 \psi _m''' \varphi _m' \varphi _m''+18 \varphi _m''' \psi _m' \varphi _m''+6 \psi _m'''' \psi _m' \varphi _m''+18 \psi _m'''{}^2 \varphi _m'-48 \psi _m''' \psi _m' \varphi _m'-6 \varphi _m''' \psi _m'{}^2-6 \varphi _m \varphi _m''' \psi _m'-18 \psi _m \varphi _m''' \varphi _m'+12 \psi _m''' \varphi _m''' \psi _m'+18 \psi _m'''' \varphi _m'{}^2-6 \psi _m'''' \varphi _m \psi _m'-18 \psi _m \psi _m'''' \varphi _m'+6 \varphi _m'''' \psi _m' \varphi _m'+18 \varphi _m''' \psi _m''{}^2+48 \psi _m'' \varphi _m''{}^2-6 \varphi _m \psi _m'' \varphi _m''-12 \psi _m''' \varphi _m \psi _m''+48 \psi _m''' \psi _m'' \varphi _m''-18 \psi _m \varphi _m''' \psi _m''+6 \varphi _m \varphi _m'''' \psi _m''-18 \psi _m \varphi _m''{}^2-36 \psi _m \psi _m''' \varphi _m''+6 \psi _m'''' \varphi _m \varphi _m''+12 \psi _m''' \varphi _m \varphi _m'''-60 \psi _m''' \psi _m' \psi _m''-6 \psi _m'''' \psi _m'{}^2-18 \psi _m''{}^3-18 \psi _m \psi _m'''' \psi _m''-18 \psi _m \psi _m'''{}^2+66 \varphi _m' \varphi _m''{}^2+6 \varphi _m \varphi _m' \varphi _m''+36 \varphi _m''' \varphi _m'{}^2+6 \varphi _m \varphi _m'''' \varphi _m'+18 \varphi _m \varphi _m''' \varphi _m'' $$
(65)
$${{\varUpsilon }_{6m}^{\varphi }}^{(3)}=18 \psi _m'' \varphi _m' \varphi _m''+18 \psi _m''' \psi _m'' \varphi _m'+9 \psi _m''' \varphi _m'{}^2+9 \psi _m''{}^2 \varphi _m''+9 \psi _m''' \psi _m''{}^2+9 \varphi _m'{}^2 \varphi _m'' $$
(66)
$${{\varUpsilon }_{6m}^{\psi }}^{(3)}=-36 \psi _m''' \varphi _m' \varphi _m''-18 \varphi _m''' \psi _m'' \varphi _m'-18 \psi _m'''' \psi _m'' \varphi _m'-9 \psi _m'''' \varphi _m'{}^2-18 \psi _m'''{}^2 \varphi _m'-18 \psi _m'' \varphi _m''{}^2-36 \psi _m''' \psi _m'' \varphi _m''-9 \varphi _m''' \psi _m''{}^2-18 \psi _m'''{}^2 \psi _m''-9 \psi _m'''' \psi _m''{}^2-18 \varphi _m' \varphi _m''{}^2-9 \varphi _m''' \varphi _m'{}^2$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacarbonara, W., Arena, A. & Antman, S.S. Flexural vibrations of nonlinearly elastic circular rings. Meccanica 50, 689–705 (2015). https://doi.org/10.1007/s11012-014-0038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0038-3

Keywords

Navigation