Skip to main content

Advertisement

Log in

Hereditary and non-hereditary etiologies associated with extensive brain calcification: case series

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Cerebral calcification may be caused by several potentially treatable conditions, however, in most cases it does not receive special attention in clinical practice. From the point of view of etiology, the diseases associated with cerebral calcification can be divided into two main groups: idiopathic (mostly incurable) and secondary (potentially treatable). The first group includes mainly the hereditary diseases identified before 2021 (primary familial brain calcification subtypes, previously known as Fahr’s disease or Fahr’s syndrome). In contrast, the second group includes diseases with cerebral calcification that develop generally as a consequence of metabolic/endocrine/autoimmune abnormalities. The aim of our research was to present hereditary and non-hereditary etiologies associated with extensive brain calcification. We compare the detailed clinical, radiological and laboratory results of 6 patients with prominent cerebral calcification identified in our clinic in the last 3 years (idiopathic and secondary etiologies as well). Our research draws attention to the complexity of the etiologies in the context of cerebral calcification. We recommend, beside NGS-based sequence analyses, the application of array comparative genomic hybridization as well, to identify potential genetic etiologies associated with brain calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in the current study are available in this paper.

References

  • Andres RH, Schroth G, Remonda L (2009) Extensive cerebral calcification in a patient with systemic lupus erythematosus. BMJ case reports 2009:bcr2007125393. https://doi.org/10.1136/bcr.2007.125393

  • Bastepe M, Fröhlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, Körkkö J, Nakamoto JM, Rosenbloom AL, Slyper AH, Sugimoto T, Tsatsoulis A, Crawford JD, Jüppner H (2003) Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest 112:1255–1263. https://doi.org/10.1172/JCI19159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batla A, Tai XY, Schottlaender L, Erro R, Balint B, Bhatia KP (2017) Deconstructing Fahr's disease/syndrome of brain calcification in the era of new genes. Parkinsonism Relat Disord 37:1–10. https://doi.org/10.1016/j.parkreldis.2016.12.024

  • Bauer M, Rahat D, Zisman E, Tabach Y, Lossos A, Meiner V, Arkadir D (2019) MYORG mutations: a major cause of recessive primary familial brain calcification. Curr Neurol Neurosci Rep 19:70. https://doi.org/10.1007/s11910-019-0986-z

    Article  CAS  PubMed  Google Scholar 

  • Bonazza S, Morgia CL, Martinelli P, Capellari S (2011) Strio-pallido-dentate calcinosis: a diagnostic approach in adult patients. Neurol Sci 32:537–545. https://doi.org/10.1007/s10072-011-0514-7

    Article  PubMed  Google Scholar 

  • Cen Z, Chen Y, Chen S, Wang H, Yang D, Zhang H, Wu H, Wang L, Tang S, Ye J, Shen J, Wang H, Fu F, Chen X, Xie F, Liu P, Xu X, Cao J, Cai P, Pan Q, Li J, Yang W, Shan PF, Li Y, Liu JY, Zhang B, Luo W (2020) Biallelic loss-of-function mutations in JAM2 cause primary familial brain calcification. Brain 143:491–502. https://doi.org/10.1093/brain/awz392

    Article  PubMed  Google Scholar 

  • Chelban V, Carecchio M, Rea G, Bowirrat A, Kirmani S, Magistrelli L, Efthymiou S, Schottlaender L, Vandrovcova J, Salpietro V, Salsano E, Pareyson D, Chiapparini L, Jan F, Ibrahim S, Khan F, Qarnain Z, Groppa S, Bajaj N, Balint B, Bhatia KP, Lees A, Morrison PJ, Wood NW, Garavaglia B, Houlden H (2020) MYORG-related disease is associated with central pontine calcifications and atypical parkinsonism. Neurol Genet 6:e399. https://doi.org/10.1212/NXG.0000000000000399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WJ, Yao XP, Zhang QJ, Ni W, He J, Li HF, Liu XY, Zhao GX, Murong SX, Wang N, Wu ZY (2013) Novel SLC20A2 mutations identified in southern Chinese patients with idiopathic basal ganglia calcification. Gene 529:159–162. https://doi.org/10.1016/j.gene.2013.07.071

    Article  CAS  PubMed  Google Scholar 

  • Cusano NE, Maalouf NM, Wang PY, Zhang C, Cremers SC, Haney EM, Bauer DC, Orwoll ES, Bilezikian JP (2013) Normocalcemic hyperparathyroidism and hypoparathyroidism in two community-based nonreferral populations. J Clin Endocrinol Metab 98:2734–2741. https://doi.org/10.1210/jc.2013-1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Oliveira MF, Silva EBE, de Oliveira JRM (2013) Prevalence of brain calcifications in a Brazilian cohort: a retrospective study in radiology services. Dement Neuropsychol 7:210–215. https://doi.org/10.1590/S1980-57642013DN70200012

    Article  PubMed  PubMed Central  Google Scholar 

  • Donzuso G, Mostile G, Nicoletti A, Zappia M (2019) Basal ganglia calcifications (Fahr's syndrome): related conditions and clinical features. Neurol Sci 40:2251–2263. https://doi.org/10.1007/s10072-019-03998-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Elli FM, Sanctis LD, Peverelli E, Bordogna P, Pivetta B, Miolo G, Beck-Peccoz P, Spada A, Mantovani G (2014) Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the a/B DMR. J Clin Endocrinol Metab 99:E724–E728. https://doi.org/10.1210/jc.2013-3704

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Westenberger A, Sobrido MJ, García-Murias M, Domingo A, Sears RL, Lemos RR, Ordoñez-Ugalde A, Nicolas G, da Cunha JEG, Rushing EJ, Hugelshofer M, Wurnig MC, Kaech A, Reimann R, Lohmann K, Dobričić V, Carracedo A, Petrović I, Miyasaki JM, Abakumova I, Mäe MA, Raschperger E, Zatz M, Zschiedrich K, Klepper J, Spiteri E, Prieto JM, Navas I, Preuss M, Dering C, Janković M, Paucar M, Svenningsson P, Saliminejad K, Khorshid HRK, Novaković I, Aguzzi A, Boss A, Le Ber I, Defer G, Hannequin D, Kostić VS, Campion D, Geschwind DH, Coppola G, Betsholtz C, Klein C, Oliveira JRM (2013) Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 45:1077–1082. https://doi.org/10.1038/ng.2723

    Article  CAS  PubMed  Google Scholar 

  • Kıroğlu Y, Callı C, Karabulut N, Oncel C (2010) Intracranial calcifications on CT. Diagn Interv Radiol 16:263–269. https://doi.org/10.4261/1305-3825.DIR.2626-09.1

    Article  PubMed  Google Scholar 

  • Kostić VS, Petrović IN (2017) Brain calcification and movement disorders. Curr Neurol Neurosci Rep 17:2. https://doi.org/10.1007/s11910-017-0710-9

    Article  CAS  PubMed  Google Scholar 

  • Laspa E, Bastepe M, Jüppner H, Tsatsoulis A (2004) Phenotypic and molecular genetic aspects of pseudohypoparathyroidism type Ib in a Greek kindred: evidence for enhanced uric acid excretion due to parathyroid hormone resistance. J Clin Endocrinol Metab 89:5942–5947. https://doi.org/10.1210/jc.2004-0249

    Article  CAS  PubMed  Google Scholar 

  • Legati A, Giovannini D, Nicolas G, López-Sánchez U, Quintáns B, Oliveira JRM, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo Á, Castro-Fernández C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47:579–581. https://doi.org/10.1038/ng.3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M (2005) A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet 76:804–814. https://doi.org/10.1086/429932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani G, Bondioni S, Linglart A, Maghnie M, Cisternino M, Corbetta S, Lania AG, Beck-Peccoz P, Spada A (2007) Genetic analysis and evaluation of resistance to thyrotropin and growth hormone-releasing hormone in pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab 92:3738–3742. https://doi.org/10.1210/jc.2007-0869

    Article  CAS  PubMed  Google Scholar 

  • Manyam BV (2005) What is and what is not ‘Fahr’s disease’. Parkinsonism Relat Disord 11:73–80. https://doi.org/10.1016/j.parkreldis.2004.12.001

    Article  PubMed  Google Scholar 

  • Miccoli P, Minuto MN, Miccoli M (2012) Incidence of morbidity following thyroid surgery. Thyroid surgery: preventing and managing complications. John Wiley & Sons, Ltd 2012:6–7

    Google Scholar 

  • Nicolas G, Pottier C, Charbonnier C, Guyant-Maréchal L, Le Ber I, Pariente J, Labauge P, Ayrignac X, Defebvre L, Maltête D, Martinaud O, Lefaucheur R, Guillin O, Wallon D, Chaumette B, Rondepierre P, Derache N, Fromager G, Schaeffer S, Krystkowiak P, Verny C, Jurici S, Sauvée M, Vérin M, Lebouvier T, Rouaud O, Thauvin-Robinet C, Rousseau S, Rovelet-Lecrux A, Frebourg T, Campion D, Hannequin D, French IBGC Study Group (2013a) Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain 136:3395–3407. https://doi.org/10.1093/brain/awt255

  • Nicolas G, Pottier C, Maltête D, Coutant S, Rovelet-Lecrux A, Legallic S, Rousseau S, Vaschalde Y, Guyant-Maréchal L, Augustin J, Martinaud O, Defebvre L, Krystkowiak P, Pariente J, Clanet M, Labauge P, Ayrignac X, Lefaucheur R, Le Ber I, Frébourg T, Hannequin D, Campion D (2013b) Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80:181–187. https://doi.org/10.1212/WNL.0b013e31827ccf34

    Article  CAS  PubMed  Google Scholar 

  • Petrarca M, Scipioni R, Di Giosia P, Giorgini P, Ferri C (2017) A case of brain calcifications in postsurgical hypoparathyroidism. Intern Emerg Med 12:113–115. https://doi.org/10.1007/s11739-016-1430-x

    Article  PubMed  Google Scholar 

  • Ramos EM, Oliveira J, Sobrido MJ, Coppola G (2017) Primary familial brain calcification. In: Adam MP, Ardinger HH, Pagon RA, et al. (eds) GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle, 1993–2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1421/

  • Saade C, Najem E, Asmar K, Salman R, Achkar BE, Naffaa L (2019) Intracranial calcifications on CT: an updated review. J Radiol Case Rep 13:1–18. https://doi.org/10.3941/jrcr.v13i8.3633

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem S, Aslam HM, Anwar M, Anwar S, Saleem M, Saleem A, Rehmani MAK (2013) Fahr's syndrome: literature review of current evidence. Orphanet J Rare Dis 8:156. https://doi.org/10.1186/1750-1172-8-156

    Article  PubMed  PubMed Central  Google Scholar 

  • Savino E, Soavi C, Capatti E, Borrelli M, Vigna GB, Passaro A, Zuliani G (2016) Bilateral strio-pallido-dentate calcinosis (Fahr's disease): report of seven cases and revision of literature. BMC Neurol 16:165. https://doi.org/10.1186/s12883-016-0693-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Taborda KNN, Wilches C, Manrique A (2017) A diagnostic algorithm for patients with intracranial calcifications. Rev Colomb Radiol 28:4732–4739

    Google Scholar 

  • Tadic V, Westenberger A, Domingo A, Alvarez-Fischer D, Klein C, Kasten M (2015) Primary familial brain calcification with known gene mutations: a systematic review and challenges of phenotypic characterization. JAMA Neurol 72:460–467. https://doi.org/10.1001/jamaneurol.2014.3889

    Article  PubMed  Google Scholar 

  • Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JRM, Sobrido MJ, Quintáns B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44:254–256. https://doi.org/10.1038/ng.1077

    Article  CAS  PubMed  Google Scholar 

  • Westenberger A, Balck A, Klein C (2019) Primary familial brain calcifications: genetic and clinical update. Curr Opin Neurol 32:571–578. https://doi.org/10.1097/WCO.0000000000000712

    Article  PubMed  Google Scholar 

  • Yamada M, Asano T, Okamoto K, Hayashi Y, Kanematsu M, Hoshi H, Akaiwa Y, Shimohata T, Nishizawa M, Inuzuka T, Hozumi I (2013) High frequency of calcification in basal ganglia on brain computed tomography images in Japanese older adults. Geriatr Gerontol Int 13:706–710. https://doi.org/10.1111/ggi.12004

    Article  PubMed  Google Scholar 

Download references

Funding

GINOP-2.3.2–15-2 grant (TK and ZM) provided by the National Research, Development and Innovation Office (Hungary). Hungarian Brain Research Program [2017–1.2.1-NKP-2017-00002 NAP VI/4] (PK).

Author information

Authors and Affiliations

Authors

Contributions

AS and DZ examined the patients and wrote the manuscript. VLN and NSZ performed the neuropsychological examination of the patients. Genetic tests and consultations were performed by AU, ZM, EH, IB and TK. PK and CSB had important recommendations to the manuscript. LSZ, ML and BB provided essential assistance in patient involvement and investigation.

Corresponding author

Correspondence to Tibor Kalmár.

Ethics declarations

Ethics approval

Written informed consent was obtained from all individual participants included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article (Regional Human Biomedical Research Ethics Committee of the University of Szeged registration numbers are 150/2014. and 44/2016., respectively). All procedures performed in this study involving human participants were in accordance with the ethical standards of the Regional Human Biomedical Research Ethics Committee of the University of Szeged and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest/competing interests

The authors declare that they have no competing/conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary video 1

Clinical phenotype of case 1 – mos 46,XY,der(11)t(X;11)(p21.1;q14.2)[152]/46,XY[48] (MP4 150,053 kb)

Supplementary video 2

Clinical phenotype of case 2 – SLC20A2 (MP4 76,142 kb)

Supplementary video 3

Clinical phenotype of case 3 – SLC20A2 (MP4 83,455 kb)

Supplementary video 4

Clinical phenotype of case 4 – STX16 (MP4 143,065 kb)

Supplementary video 5

Clinical phenotype of case 5 – Infiltration of the parathyroid gland (MP4 90,431 kb)

Supplementary video 6

Clinical phenotype of case 6 – Secondary hypoparathyroidism (thymectomy) (MP4 88,249 kb)

Supplementary file 1

The gene content of the genetic alteration mos 46,XY,der(11)t(X;11)(p21.1;q14.2)[152]/46,XY[48] found in Case 1 (PDF 488 kb)

Supplementary file 2

Pedigrees and chromatograms of Cases 1–4. (The generation are signed with Roman numbers. The deceased members are crossed. Individuals with symptoms are marked in black. Abbreviations: arrow – genetic test was performed; d. – age of death; E – genetic examination; p – proband; y – year; + or - – the result of the genetic test.) (PDF 1978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamon, A., Zádori, D., Ujfalusi, A. et al. Hereditary and non-hereditary etiologies associated with extensive brain calcification: case series. Metab Brain Dis 36, 2131–2139 (2021). https://doi.org/10.1007/s11011-021-00790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00790-9

Keywords

Navigation