Skip to main content

Advertisement

Log in

Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Ischemic postconditioning (PostC) conventionally refers to a series of brief blood vessel occlusions and reperfusions, which can induce an endogenous neuroprotective effect and reduce cerebral ischemia/reperfusion (I/R) injury. Depending on the site of adaptive ischemic intervention, PostC can be classified as in situ ischemic postconditioning (ISPostC) and remote ischemic postconditioning (RIPostC). Many studies have shown that ISPostC and RIPostC can reduce cerebral IS injury through protective mechanisms that increase cerebral blood flow after reperfusion, decrease antioxidant stress and anti-neuronal apoptosis, reduce brain edema, and regulate autophagy as well as Akt, MAPK, PKC, and KATP channel cell signaling pathways. However, few studies have compared the intervention methods, protective mechanisms, and cell signaling pathways of ISPostC and RIPostC interventions. Thus, in this article, we compare the history, common intervention methods, neuroprotective mechanisms, and cell signaling pathways of ISPostC and RIPostC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

I/R:

Ischemia/reperfusion

PostC:

Ischemic postconditioning

RIPostC:

Remote ischemic postconditioning

ISPostC:

In situ ischemia postconditoning

MCAO:

Middle cerebral artery occlusion

References

  • Arsene D, Vasilescu F, Toader C, Bălan A, Popa C, Ardeleanu C (2011) Clinico-pathological correlations in fatal ischemic stroke. An immunohistochemical study of human brain penumbra. Romanian J Morphol Embryol 52(1):29–38

    CAS  Google Scholar 

  • Burda R, Morochovič R, Némethová M, Burda J (2019) Remote ischemic postconditioning as well as blood plasma from double-conditioned donor ameliorate reperfusion syndrome in skeletal muscle. J Plast Surg Hand Surg 8:1–7

    Google Scholar 

  • Casabona G (1997) Intracellular signal modulation: a pivotal role for protein kinase C. Prog Neuro-Psychopharmacol Biol Psychiatry 21:407–425

    CAS  Google Scholar 

  • Chen G, Ye X, Zhang J, Tang T, Li L, Lu P, Wu Q, Yu B, Kou J (2016) Limb remote ischemic postconditioning reduces ischemia-reperfusion injury by inhibiting nadphoxidase activation and Myd88-Traf6-P38map-kinase pathway of neutrophils. Int J Mol Sci 17(12):E1971

    PubMed  Google Scholar 

  • Chen GZ, Shan XY, Li XS, Tao HM (2018a) Remote ischemic postconditioning protects the brain from focal ischemia/reperfusion injury by inhibiting autophagy through the mTOR/p70S6K pathway. Neurol Res 40(3):182–188

    CAS  PubMed  Google Scholar 

  • Chen G, Thakkar M, Robinson C, Doré S (2018b) Limb remote ischemic conditioning: mechanisms, anesthetics, and the potential for expanding therapeutic options. Front Neurol 9:40

    PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Li L, Mo X, Zhang L, Xie Y, Guo Q, Wang Y (2014) Non-invasive remote limb ischemic postconditioning protects rats against focal cerebral ischemia by upregulating STAT3 and reducing apoptosis. Int J Mol Med 34:957–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Zoppo GJ, Frankowski H, Gu YH, Osada T, Kanazawa M, Milner R, Wang X, Hosomi N, Mabuchi T, Koziol JA (2012) Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab 32(5):919–932

    PubMed  PubMed Central  Google Scholar 

  • Ding ZM, Wu B, Zhang WQ, Lu XJ, Lin YC, Geng YJ, Miao YF (2012) Neuroprotective effects of ischemic preconditioning and postconditioning on global brain ischemia in rats through the same effect on inhibition of apoptosis. Int J Mol 13:6089–6101

    CAS  Google Scholar 

  • Ebner B, Lange SA, Hollenbach D, Steinbronn N, Ebner A, Fischaleck C, Braun-Dullaeus R, Weinbrenner C, Strasser RH (2015) In situ postconditioning with neuregulin-1β is mediated by a PI3K/Akt-dependent pathway. Can J Cardiol 31(1):76–83

    PubMed  Google Scholar 

  • Esmaeeli-Nadimi A, Kennedy D, Allahtavakoli M (2015) Opening the window: ischemic postconditioning reduces the hyperemic response of delayed tissue plasminogen activator and extends its therapeutic time window in an embolic stroke model. Eur J Pharmacol 764:55–62

    CAS  PubMed  Google Scholar 

  • Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H, Tracey KJ, Billiar TR, Wilson MA (2007) Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol 178:6573–6580

    CAS  PubMed  Google Scholar 

  • Feng R, Li S, Li F (2011) Toll-like receptor 4 is involved in ischemic tolerance of postconditioning in hippocampus of tree shrews to thrombotic cerebral ischemia. Brain Res 1384:118–127

    CAS  PubMed  Google Scholar 

  • Fujita T, Hirooka K, Nakamura T, Itano T, Nishiyama A, Nagai Y, Shiraga F (2012) Neuroprotective effects of angiotensin II type 1 receptor (AT1-R) blocker via modulating AT1-R signaling and decreased extracellular glutamate levels. Invest Ophthalmol Vis Sci 53:4099–4110

    CAS  PubMed  Google Scholar 

  • Gao X, Ren C, Zhao H (2008a) Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J Neurosci Res 86:2505–2511

    CAS  PubMed  Google Scholar 

  • Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H (2008b) The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem 105(3):943–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, Su L, Zhang Y (2012) Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One 7:e46092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han D, Zhang S, Fan B, Wen LL, Sun M, Zhang H, Feng J (2014) Ischemic postconditioning protects the neurovascular unit after focal cerebral ischemia/reperfusion injury. J Mol Neurosci 53:50–58

    CAS  PubMed  Google Scholar 

  • Han D, Sun M, He PP, Wen LL, Zhang H, Feng J (2015) Ischemic postconditioning alleviates brain edema after focal cerebral ischemia reperfusion in rats through down-regulation of aquaporin-4. J Mol Neurosci 56:722–729

    CAS  PubMed  Google Scholar 

  • Hess DC, Hoda MN, Khan MB (2016) Humoral mediators of remote ischemic conditioning: important role of eNOS/NO/nitrite. Acta Neurochir Suppl 121:45–48

    PubMed  Google Scholar 

  • Jewell JL, Guan KL (2015) Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 38:233–242

    Google Scholar 

  • Kahles T, Brandes RP (2012) NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 69:2345–2363

    CAS  PubMed  Google Scholar 

  • Katan M, Luft A (2018) Global burden of stroke. Semin Neurol 38(2):208–211

    PubMed  Google Scholar 

  • Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J (2005) Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol 100(5):404–412

    CAS  PubMed  Google Scholar 

  • Khan MB, Hoda M, Vaibhav K, Giri S, Wang P, Waller JL, Ergul A, Dhandapani KM, Fagan SC, Hess DC (2015) Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl Stroke Res 6(6):69–77

    PubMed  Google Scholar 

  • Koh PO, Cho JH, Won CK, Lee HJ, Sung JH, Kim MO (2008) Estradiol attenuates the focal cerebral ischemic injury through mTOR/p70S6 kinase signaling pathway. Neurosci Lett 436:62–66

    CAS  PubMed  Google Scholar 

  • Kozlu S, Caban S, Yerlikaya F, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Yemisci M, Gursoy-Ozdemir Y, Dalkara T, Couvreur P, Capan Y (2014) An aquaporin 4 antisense oligonucleotide loaded, brain targeted nanoparticulate system design. Pharmazie 69(5):340–345

    CAS  PubMed  Google Scholar 

  • Lenglet S, Montecucco F, Mach F (2015) Role of matrix metalloproteinases in animal models of ischemic stroke. Curr Vasc Pharmacol 13(2):161–166

    CAS  PubMed  Google Scholar 

  • Li P, Su L, Li X, Di W, Zhang X, Zhang C (2015a) Remote limb ischemic postconditioning protects mouse brain against cerebral ischemia/reperfusion injury via upregulating expression of Nrf2, Ho-1 and Nqo-1 in mice. Int J Neurosci 126(6):1–8

    Google Scholar 

  • Li S, Hu X, Zhang M, Zhou F, Lin N, Xia Q (2015b) Remote ischemic post-conditioning improves neurological function by Aqp4 down-regulation in astrocytes. Behav Brain Res 289:1–8

    CAS  PubMed  Google Scholar 

  • Li H, Zhou S, Wu L, Liu K, Zhang Y, Ma G (2015c) The role of p38MAPK signal pathway in the neuroprotective mechanism of limb postconditioning against rat cerebral ischemia/reperfusion injury. J Neurol Sci 357:270–275

    CAS  PubMed  Google Scholar 

  • Li J, Hu XS, Zhou FF, Li S, Lin YS, Qi WQ (2018) Limb remote ischemic postconditioning protects integrity of the blood-brain barrier after stroke. Neural Regen Res 13(9):1585–1593

    PubMed  PubMed Central  Google Scholar 

  • Liang J, Xu H, Zhang X, Li X, Zhang H, Ge P (2013) Role of mitochondrial function in the protective effects of ischemic postconditioning on ischemia/reperfusion cerebral damage. J Int Med Res 41:618–627

    CAS  PubMed  Google Scholar 

  • Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P (2014) Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-kappaB/p65 activation. PLoS One 9:e96734

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhao S, Liu F, Kang J, Xiao A, Li F (2014) Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl Stroke Res 5(6):692–700

    CAS  PubMed  Google Scholar 

  • Liu C, Yang J, Zhang C, Geng X, Zhao H (2020) Remote ischemic conditioning reduced cerebral ischemic injury by modulating inflammatory responses and ERK activity in type 2 diabetic mice. Neurochem Int 135:104690

    CAS  PubMed  Google Scholar 

  • Min F, Jia XJ, Gao Q, Niu F, Hu ZY, Han YL, Shi HJ, Yu Y (2020) Remote ischemic post-conditioning protects against myocardial ischemia/reperfusion injury by inhibiting the rho-kinase signaling pathway. Exp Ther Med 19(1):99–106

    CAS  PubMed  Google Scholar 

  • Peng B, Guo QL, He ZJ, Ye Z, Yuan YJ, Wang N (2012) Remote ischemic postconditioning protects the brain from global cerebral ischemia/reperfusion injury by up-regulating endothelial nitric oxide synthase through the PI3K/Akt pathway. Brain Res 1445:92–102

    CAS  PubMed  Google Scholar 

  • Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley M, Xiong Z (2008) In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J Cereb Blood Flow Metab 28(2):232–241

    CAS  PubMed  Google Scholar 

  • Pignataro G, Esposito E, Cuomo O, Sirabella R, Boscia F, Guida N (2011) The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J Cereb Blood Flow Metab 31:362–370

    CAS  PubMed  Google Scholar 

  • Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC (2015) 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with Acute Ischemic Stroke Regarding Endovascular Treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 46(10):3020–3035

    CAS  PubMed  Google Scholar 

  • Qi ZF, Luo YM, Liu XR, Wang RL, Zhao HP, Yan F (2012) Akt/Gsk3beta-dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther 18(12):965–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi Z, Dong W, Shi W, Wang R, Zhang C, Zhao Y (2015) Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res 6(3):198–206

    CAS  PubMed  Google Scholar 

  • Qi W, Zhou F, Li S, Zong Y, Zhang M, Lin Y (2016) Remote ischemic postconditioning protects ischemic brain from injury in rats with focal cerebral ischemia/reperfusion associated with suppression of TLR4 and NF-кB expression. Neuroreport 27(7):469–475

    CAS  PubMed  Google Scholar 

  • Rehni AK, Singh N (2007) Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol Rep 59(2):192–198

    CAS  PubMed  Google Scholar 

  • Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H (2009) Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res 1288:88–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rui F, Shuqing LI (2011) Ischemia postconditioning regulates TLR4 expression in tree shrewss cortex of thrombotic cerebral ischemia. Basic & Clinical Medicine 31(5):503–508

    Google Scholar 

  • Shimohata T, Zhao H, Steinberg GK (2007a) Epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke 38:375–380

    PubMed  Google Scholar 

  • Shimohata T, Zhao H, Sung JH, Sun G, Mochly-Rosen D, Steinberg GK (2007b) Suppression of deltaPKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia. J Cereb Blood Flow Metab 27:1463–1475

    CAS  PubMed  Google Scholar 

  • Su J, Zhang T, Wang K, Zhu T, Li X (2014) Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats. Neurochem Res 39(11):2068–2077

    CAS  PubMed  Google Scholar 

  • Wang JK, Yu LN, Zhang FJ, Yang MJ, Yu J, Yan M (2010) Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res 1357:142–151

    CAS  PubMed  Google Scholar 

  • Wang Q, Zhang X, Ding Q, Hu B, Xie Y, Li X (2011) Limb remote Postconditioning alleviates cerebral reperfusion injury through reactive oxygen species-mediated inhibition of Delta protein kinase C in rats. Anesth Analg 113(5):1180–1187

    CAS  PubMed  Google Scholar 

  • Wang C, Wang Z, Zhang X, Zhang X, Dong L, Xing Y (2012) Protection by silibinin against experimental ischemic stroke: up-regulated pAkt, pmTOR, HIF-1α and Bcl-2, down-regulated Bax, NF-κB expression. Neurosci Lett 529:45–50

    CAS  PubMed  Google Scholar 

  • Wang Y, Ge P, Yang L, Wu C, Zha H, Luo T (2014) Protection of ischemic post conditioning against transient focal ischemia-induced brain damage is associated with inhibition of neuroinflammation via modulation of TLR2 and TLR4 pathways. J Neuroinflammation 11(15):1–11

    Google Scholar 

  • Wang J, Han D, Sun M, Feng J (2016) A combination of remote ischemic perconditioning and cerebral ischemic postconditioning inhibits autophagy to attenuate plasma Hmgb1 and induce neuroprotection against stroke in rat. J Mol Neurosci 58(4):424–431

    CAS  PubMed  Google Scholar 

  • Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke. Prog Neurobiol 163-164:98–117

    CAS  PubMed  Google Scholar 

  • Wu H, Yang SF, Dai J, Qiu YM, Miao YF, Zhang XH (2015) Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia. Mol Med Rep 12:6427–6434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Hafeez A, Zhang Y, Liu S, Kong Q, Duan Y (2015) Neuroprotection by peripheral nerve electrical stimulation and remote postconditioning against acute experimental ischaemic stroke. Neurol Res 37(5):447–453

    PubMed  Google Scholar 

  • Xie R, Wang P, Ji X, Zhao H (2013) Post-conditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats. J Neurochem 127:723–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie R, Wang P, Cheng M, Sapolsky R, Zhao H (2014) The mTOR cell signaling pathway contributes to the protective effects of ischemic postconditioning against stroke. Stroke 45:2769–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie R, Li J, Zhao H (2018) The underlying mechanisms involved in the protective effects of ischemic postconditioning. Cond Med 1(2):73–79

    PubMed  PubMed Central  Google Scholar 

  • Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X (2008) Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39:2362–2369

    CAS  PubMed  Google Scholar 

  • Xu W, Jin W, Zhang X, Chen J, Ren C (2017) Remote limb preconditioning generates a neuroprotective effect by modulating the extrinsic apoptotic pathway and TRAIL-receptors expression. Cell Mol Neurobiol 37(1):169–182

    PubMed  Google Scholar 

  • Yang F, Zhang X, Sun Y, Wang B, Zhou C, Luo Y (2013) Ischemic postconditioning decreases cerebral edema and brain blood barrier disruption caused by relief of carotid stenosis in a rat model of cerebral hypoperfusion. PLoS One 8:e57869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Fan SJ, Liu L, Xiao M, Lin XJ, Liu Y (2015) Effect of ischemic postconditioning on cerebral edema and the AQP4 expression following hypoxic-ischemic brain damage in neonatal rats. World J Pediatr 11:165–170

    CAS  PubMed  Google Scholar 

  • Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang Y, Bi G (2017) Limb remote ischaemic postconditioning-induced elevation of fibulin-5 confers neuroprotection to rats with cerebral ischaemia/reperfusion injury: activation of the Akt pathway. Clin Exp Pharmacol Physiol 44(6):656–663

    CAS  PubMed  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):579–588

    Google Scholar 

  • Zhao H, Sapolsky RM, Steinberg GK (2006) Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab 26:1114–1121

    CAS  PubMed  Google Scholar 

  • Zhou Y, Fathali N, Lekic T, Ostrowski RP, Chen C, Martin RD (2011) Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opoid receptor/Akt pathway. Stroke 42:439–444

    CAS  PubMed  Google Scholar 

  • Zhou M, Xia ZY, Lei SQ, Leng Y, Xue R (2015) Role of mitophagy regulated by Parkin/DJ-1 in remote ischemic postconditioning-induced mitigation of focal cerebral ischemia-reperfusion. Eur Rev Med Pharmacol Sci 19(24):4866–4871

    CAS  PubMed  Google Scholar 

  • Zhou CC, Yao WT, Ge YZ, Xu LW, Wu R, Gao XF, Song KW, Jiang XM, Wang M, Huang WJ, Zhu YP, Li LP, Zhou LH, Xu ZL, Zhang SL, Zhu JG, Li WC, Jia RP (2017) Remote ischemic conditioning for the prevention of contrast-induced acute kidney injury in patients undergoing intravascular contrast administration: a meta-analysis and trial sequential analysis of 16 randomized controlled trials. Oncotarget 8(45):79323–79336

    PubMed  PubMed Central  Google Scholar 

  • Zong Y, Jiang L, Zhang M, Zhou F, Qi W, Li S (2015) Limb remote ischemic postconditioning protects cerebral ischemia from injury associated with expression of HIF-1alpha in rats. BMC Neurosci 16:97

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. This work was supported by the Natural Science Foundation of China (No.31560295). The Yunnan province research innovation team for the effect of neurodevelopmental regulatory factors in neural repair and clinical application (Kunming medical university) (No.2018HC084) Yunnan Applied Basic Research Projects (No.2018FE001(-163), 2018FE001(-016)). The project of major scientific and technological achievements cultivation of Kunming Medical University (No. CGPY201802).

Author information

Authors and Affiliations

Authors

Contributions

Li-Yan Li and Jian-Hui Guo designed and provided the funds and financial supports for this research. Chun-Yan Li, Yun-Fei Dai, Wei Ma, Kuang-Pin Liu, Jin-Wei Yang, Xian-Bin Wang, Zheng Wu, Tong Zhang and Jia-Wei Wang carried out the experimental study. Wei Liu, Jie Liu, Yu Liang, Xing-Kui Zhang, Jun-Jun Li analyzed data. Chun-Yan Li, Li-Yan Li and Jian-Hui Guo wrote the manuscript. All Authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian-Hui Guo or Li-Yan Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CY., Ma, W., Liu, KP. et al. Advances in intervention methods and brain protection mechanisms of in situ and remote ischemic postconditioning. Metab Brain Dis 36, 53–65 (2021). https://doi.org/10.1007/s11011-020-00562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00562-x

Keywords

Navigation