Skip to main content

Advertisement

Log in

Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The precise contributions of ventral tegmental area (VTA) dopaminergic (DAergic) neurons to reward-related behaviors are a longstanding hot topic of debate. Whether the activity of VTA DAergic neurons directly modulates rewarding behaviors remains uncertain. In the present study, we investigated the fundamental role of VTA DAergic neurons in reward-related movement and reinforcement by employing dopamine transporter (DAT)-Cre transgenic mice expressing hM3Dq, hM4Di or channelrhodopsin 2 (ChR2) in VTA DAergic neurons through Cre-inducible adeno-associated viral vector transfection. On the one hand, locomotion was tested in an open field to examine motor activity when VTA DAergic neurons were stimulated or inhibited by injection of the hM3Dq or hM4Di ligand clozapine-N-oxide (CNO), respectively. CNO injection to selectively activate or inhibit VTA DAergic neurons significantly increased or decreased locomotor activity, respectively, compared with vehicle injection, indicating that VTA DAergic neuron stimulation is directly involved in the regulation of motor activity. On the other hand, we used the optical intracranial self-stimulation (oICSS) model to investigate the causal link between reinforcement and VTA DAergic neurons. Active poking behavior but not inactive poking behavior was significantly escalated in a frequency- and pulse duration-dependent manner. In addition, microdialysis revealed that the concentration of dopamine (DA) in the nucleus accumbens (NAc) was enhanced by selective optogenetic activation of VTA DAergic neurons. Furthermore, systemic administration of a DA D1 receptor antagonist significantly decreased oICSS reinforcement. Our research profoundly demonstrates a direct regulatory role of VTA DAergic neurons in movement and reinforcement and provides meaningful guidance for the development of novel treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31(30):10829–10835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114(5):1344–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86(3):646–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369

    Article  CAS  PubMed  Google Scholar 

  • David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P (2008) Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 33(7):1746–1759

    Article  CAS  PubMed  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142(3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Devine DP, Wise RA (1994) Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14(4):1978–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors--physiological understanding to therapeutic intervention potential. Pharmacol Ther 84(2):133–156

    Article  CAS  PubMed  Google Scholar 

  • Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2007) The Mouse Brain in Stereotaxic Coordinates. New York, the United States, Academic Press

  • Garcia-Ruiz PJ, Martinez Castrillo JC, Desojo LV (2019) Creativity related to dopaminergic treatment: a multicenter study. Elsevier Publishing Parkinsonism Relat Disord. https://www.prd-journal.com/article/S1353-8020(19)30056-2. Accessed 22 Feb 2007

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612

    Article  CAS  PubMed  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7(4):e33612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101(2):129–152

    Article  CAS  PubMed  Google Scholar 

  • Minogianis EA, Shams WM, Mabrouk OS, Wong JT, Brake WG, Kennedy RT, du Souich P, Samaha AN (2018) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Federation of European Neuroscience Societies and John Wiley & Sons Publishing Eur J Neurosci. https://doi.org/10.1111/ejn.13941. Accessed 14 May 2018

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144

    Article  CAS  PubMed  Google Scholar 

  • Pascoli V, Terrier J, Hiver A, Luscher C (2015) Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88(5):1054–1066

    Article  CAS  PubMed  Google Scholar 

  • Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90(4):894–903

    Article  CAS  PubMed  Google Scholar 

  • Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61(1):65–69

    Article  CAS  PubMed  Google Scholar 

  • Schrantee A, Tamminga HG, Bouziane C, Bottelier MA, Bron EE, Mutsaerts HJ, Zwinderman AH, Groote IR, Rombouts SA, Lindauer RJ, Klein S, Niessen WJ, Opmeer BC, Boer F, Lucassen PJ, Andersen SL, Geurts HM, Reneman L (2016) Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: a randomized clinical trial. JAMA Psychiatry 73(9):955–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    Article  CAS  PubMed  Google Scholar 

  • Schultz W (2016) Dopamine reward prediction error coding. Dialogues Clin Neurosci 18(1):23–32

    PubMed  PubMed Central  Google Scholar 

  • Sikstrom S, Soderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 114(4):1047–1075

    Article  PubMed  Google Scholar 

  • Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 12(5):1827–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64

    Article  CAS  PubMed  Google Scholar 

  • Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9(4):e94771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Tan Y, Zhang JE, Luo M (2013) Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity. Neurosci Bull 29(5):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494

    Article  CAS  PubMed  Google Scholar 

  • Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79(6):945–955

    Article  CAS  PubMed  Google Scholar 

  • Zink CF, Pagnoni G, Martin ME, Dhamala M, Berns GS (2003) Human striatal response to salient nonrewarding stimuli. J Neurosci 23(22):8092–8097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFC131040), National Natural Science Foundation of China (No. U1502225), National Key R&D Program of China (2016YFC0800907), National Natural Science Foundation of China (81573405), Medical Innovation Program (16CXZ033) and Beijing Nova Program (xx2014A014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Song or Jin Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, MY., Han, X., Zhao, TY. et al. Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice. Metab Brain Dis 34, 1421–1430 (2019). https://doi.org/10.1007/s11011-019-00442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00442-z

Keywords

Navigation