Skip to main content

Advertisement

Log in

Biochemical and behavioral phenotype of AGAT and GAMT deficient mice following long-term Creatine monohydrate supplementation

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The creatine/phosphocreatine system is essential for cellular phosphate coupled energy storage and production. We investigated the utility of creatine monohydrate supplementation in two different creatine deficient knockout mouse models. Following weaning, female Arginine: Glycine Amidinotransferase (AGAT) and Guanidinoacetate: methyltransferase (GAMT) knockouts and wild type mice were studied based on their genotypes and dietary supplementation (creatine free or 2% creatine monohydrate supplemented diet) for 10 weeks, using a series of behavioral tests and biochemical analyzes. An improved Rota rod performance was observed in both AGAT (p = 0.02) and GAMT knockout mice (p < 0.001) supplemented with 2% creatine. During Morris water maze probe trial, creatine supplemented AGAT knockout mice took less time to reach virtual platform (p = 0.03) and more frequently crossed this area (p = 0.001) than mice on creatine free diet. Similar observations were recorded for GAMT knockout mice. Urinary creatinine concentrations for AGAT (p = 0.001) and GAMT (p = 0.05) knockout mice were increased following creatine supplementation. Creatine supplementation has a potential to improve neuro-muscular coordination, spatial learning in both AGAT and GAMT knockout mice. Long term Creatine supplementation results in increased urine creatinine concentrations indicating improved creatine metabolism in knockout mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AlmediaL S, Vilarinho L, Darmin PS, Rosenberg EH, Martinez-Munoz C, Jakobs C et al (2007) A prevalent pathogenic GAMT mutation (c.59G>C) in Portugal. Mol Genet Metab 91:1–6

    Article  Google Scholar 

  • Almeida LS, Salomons GS, Hogenboom F, Jakobs C, Schoffelmeer AN (2006) Exocytotic release of creatine in rat brain. Synapse 60(2):118–123

    Article  CAS  PubMed  Google Scholar 

  • Amital D, Vishne T, Roitman S, Kotler M, Levine J (2006) Open study of creatinemonohydrate in treatment-resistant posttraumatic stress disorder. J Clin Psychiat 67:836–837

    Article  Google Scholar 

  • Battini B, Euzzi V, Carducci C, Tosetti M, Binachi MC, Item CB et al (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Gen Metab 77:326–331

    Article  CAS  Google Scholar 

  • Bianchi MC, Tosetti M, Fornai F, Alessandri MG, Cipriani P, De Vito G et al (2000) Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 47:511–513

    Article  CAS  PubMed  Google Scholar 

  • Bianchi MC, Tosetti M, Battini R, Leuzzi V, Alessandri MG, Carducci C et al (2007) Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. Am J Neuroradiol 28:548–554

    CAS  PubMed  Google Scholar 

  • Bodamer OA, Bloesch SM, Gregg AR, Stockler-Ipsiroglu S, Brien EO (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clin Chim Acta 308:173–178

    Article  CAS  PubMed  Google Scholar 

  • Cecil M, Salomons WS, Ball B, Wong G, Chuck NM, Verhoeven CJ et al (2001) Reversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 49:401–404

    Article  CAS  PubMed  Google Scholar 

  • Choe C, Nabuurs C, Stockebr M, Neu A, Nune P, Morellini F et al (2013) L-arginine:glycineamidinotransferase (AGAT) deficiency protects from metabolic syndrome. Human Mol Genet 22(1):110–123

    Article  CAS  Google Scholar 

  • Dhar SU, Scaglia F, Li FY, Smith L, Barshop BA, Eng CM et al (2009) Expanded clinical and molecular spectrum of guanidinoacetate methyltransferase (GAMT) deficiency. Mol Genet Metabol 96:38–43

    Article  CAS  Google Scholar 

  • Figura V (2001) Hanefeld F, Isbrandt D. StocklerIpsiroglu S. Guanidinoacetate methyltransferase deficiency. The metabolic and molecular basis of inherited disease. McGraw Hill, New York

    Google Scholar 

  • Gualano B, Novaes RB, Artioli GG, Freire TO, Coelho DF, Scagliusi FB et al (2007) Effects of creatine supplementation on glucose tolerance and insulin sensitivity in sedentary healthy males undergoing aerobic training. Amino Acids 34:245–250

    Article  PubMed  Google Scholar 

  • Humm A, Fritsche E, Steinbacher S, Huber R (1997) Crystal structure and mechanism of human L-arginine:glycineamidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis. EMBO J 16:3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal F (2009) Neuroprotective roleof creatine defined in mouse models of Arginine: Glycine Amidino Transferase (AGAT) and Guanidinoacetate Methyltransferase (GAMT) deficiency. PhD Thesis. Medical University Vienna, Austria

  • Iqbal F (2015) Human guanidinoacetate n-methyl transferase (GAMT) deficiency:a treatable inborn error of metabolism. Pak J Pharmaceut Sci 28(6):2207–2211

    CAS  Google Scholar 

  • Iqbal S, Ali M, Iqbal F (2015a) Long-term creatine monohydrate supplementation, following neonatal hypoxic ischemic insult, improves neuromuscular coordination and spatial learning in male albinomouse. Brain Res 1603:76–83

    Article  CAS  PubMed  Google Scholar 

  • Iqbal S, Ali M, Akbar A, Iqbal F (2015b) Effectsofdietary Creatine supplementationfor 8 weeks on neuromuscular coordination and learning in male albino mouse following neonatal hypoxic ischemic insult. Neurol Sci 36(5):765–770

    Article  PubMed  Google Scholar 

  • Item CB (2004) Mercimek-Mahmutoglu, Battini R, Edlinger-Horvat C, Stromberger C, Bodamer O, et al., characterization of seven novel mutations in seven patients with GAMT deficiency. Hum Mut 23:524–530

    Article  CAS  PubMed  Google Scholar 

  • Item CB, Stöckler-Ipsiroglu S, Stromberger C, Mühl A, Alessandari MG, Bianchi MC et al (2001) Arginine:glycineamidinotransferase deficiency: the third inborn error of metabolism in man. Am J Hum Genet 69:1127–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komura K, Hobbiebrunken E, Wilichowski EK, Henefeld FA (2003) Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr Neurol 28:53–58

    Article  PubMed  Google Scholar 

  • Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J et al (1998) Effects of creatine supplementation on body composition, strength and sprint performance. Med Sci Sport Exer 30:73–82

    Article  CAS  Google Scholar 

  • Mercimek-Mahmutoglu S, Stoeckler-Ipsiroglu S, Adami A, Appleton R, Araújo HC, Duran M et al (2006) GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurol 67:480–484

    Article  CAS  Google Scholar 

  • MuddSH EMH, Scriver CR (1980) Labile methyl group balances in the human: the role of sarcosine. Metabol 29:707–720

    Article  Google Scholar 

  • Nabuurs CI, Choe CU, Veltien A, Kan HE, van Loon LJC, Rodenburg RJT et al (2013) Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake. J Physiol 591(2):571–592

    Article  CAS  PubMed  Google Scholar 

  • Rae C, Digney AL, Mc Ewan SR, Bates TC (2003) Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo controlled, cross-over trial. Proc Biol Sci 270:2147–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmons GS, van Dooren SJM, Verhoeven NM, Cecil KM, Ball WS, DeGrauw TS et al (2001) X-linked creatine transporter (SLC6A8 gene) defect: a new creatine deficiency syndrome. Am J Hum Genet 68:1497–1500

    Article  Google Scholar 

  • Schmidt A, Marescau B, Boehm EA, Renema WKJ, Peco R, Das A et al (2004) Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet 13:905–921

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Hess T, Wevers R, Mayatepek E, Bachert P, Marescau BV et al (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools or a new inborn error of metabolism. J Pediatr 131:626–631

    Article  CAS  PubMed  Google Scholar 

  • Sipilä I, Simell O, Arjoma P (1980) Gyrate atrophy of the choroid and retina with hyperornithinemia. J Clin Invest 6:684

    Article  Google Scholar 

  • Stöckler S, Holzbach U, Hanefeld F, Marquardt I, Helms M, Requart M et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36:409–413

    Article  PubMed  Google Scholar 

  • Stöckler S, Marescau B, De Deyn PP, Trijbels JMF, Hanefeld F (1997) Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabol 46:1189–1193

    Article  Google Scholar 

  • Torremans A, Marescau B, Possemiers I, Dam DV, Hooge RD, Isbrandt D et al (2005) Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. J Neuol Sci 231:49–55

    Article  CAS  Google Scholar 

  • Valenzuela MJ, Jones M, Wen W, Rae C, Graham S, Shnier R et al (2003) Memory training alters hippocampal neurochemistry in healthy elderly. Neuro report 14:1333–1337

    Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Ami Acids 40:1271–1296

    Article  CAS  Google Scholar 

  • Watanabe A, Kato N, Kato T (2001) Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neurosci Res 42:279–285

    Article  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Dr. Dirk Isbrandt, University of Hamburg, Hamburg, Germany for donating breeding pairs of AGAT and GAMT mouse models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furhan Iqbal.

Ethics declarations

Financial assistance

This work was part of the PhD (FI). He was sponsored by the Higher Education Commission (HEC) of Pakistan through their overseas PhD fellowship program.

Conflict of interest

Authors disclose no conflict of interest.

Electronic supplementary material

Supplementary Figure 1

Comparison of weight gain in the four experimental treatments for AGAT (A) and GAMT (B) mice after 10 weeks of special diet supplementation. (JPEG 104 kb)

11011_2017_92_MOESM2_ESM.doc

Supplementary Figure Table 1 (DOC 38.5 kb)

11011_2017_92_MOESM3_ESM.doc

Supplementary Figure Table 2 (DOC 37.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, F., Hoeger, H., Lubec, G. et al. Biochemical and behavioral phenotype of AGAT and GAMT deficient mice following long-term Creatine monohydrate supplementation. Metab Brain Dis 32, 1951–1961 (2017). https://doi.org/10.1007/s11011-017-0092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0092-3

Keywords

Navigation