Skip to main content

Advertisement

Log in

Accumulation of reactivity to MBP sensitizes TRAIL mediated oligodendrocyte apoptosis in adult sub cortical white matter in a model for human multiple sclerosis

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Reactivity to myelin associated proteins is the hallmark of human multiple sclerosis (M.S) and its experimental counterparts. However, the nature of such reactivity has not been described fully. Herein, we report that myelin basic protein (MBP) reactivity accumulates in a rat model for M.S. over a period of time and sensitizes TRAIL mediated progressive oligodendrocyte apoptosis. We used active immunization by Myelin Oligodendrocyte Glycoprotein (MOG, 50 μg) to study chronic remitting relapsing encephalomyelitis in rats. A time point analysis of the progressive disease revealed cumulative accumulation of anti myelin basic protein antibodies during the disease progression with minimal change in the anti-MOG antibodies. Increased reactivity to MBP was studied to sensitize TNF related apoptosis-inducing ligand (TRAIL) and other proinflammatory cytokines in a cumulative fashion leading to the Caspase dependent apoptosis of oligodendrocytes and myelin loss. In a rescue experiment, we could limit the demyelination and prevent disease progression by neutralizing the effector, TRAIL in an early stage of the disease. This is the first study to identify the accumulation of MBP antibodies in MOG induced EAE which possibly leads to TRAIL sensitized oligodendrocyte apoptosis in the white mater of EAE rats. This finding stresses on the need to study MBP antibody titers in M.S. patients and therefore might serve as an alternate marker for progressive demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberto A, Munger KL, Lünemann JD (2012) The initiation and prevention of multiple sclerosis. Nat Rev. Neurology 8(11):602–612

    Article  Google Scholar 

  • Bifulco M, Laezza C, Stingo S, Wolff J (2002) 2',3'-cyclic nucleotide 3'-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc Natl Acad Sci U S A 99(4):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Breithaupt C, Schäfer B, Pellkofer H, Huber R, Linington C, Jacob U (2008) Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope region in rodents. J Immunol 181(2):1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Dubois-Dalcq M, Behar T, Hudson L, Lazzarini RA (1986) Emergence of three myelin proteins in oligodendrocytes cultured without neurons. J Cell Biol 102(2):384–392

    Article  CAS  PubMed  Google Scholar 

  • Hinman JD, Chen CD, Oh SY, Hollander W, Abraham CR (2008) Age-dependent accumulation of ubiquitinated 2',3'-cyclic nucleotide 3'-phosphodiesterase in myelin lipid rafts. Glia 56(1):118–133

    Article  PubMed  Google Scholar 

  • Kutzelnigg A, Lassmann H (2014) Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol. 122:15–58

    Article  PubMed  Google Scholar 

  • Lalive PH, Häusler MG, Maurey H, Mikaeloff Y, Tardieu M, Wiendl H, Schroeter M, Hartung HP, Kieseier BC, Menge T (2011) Highly reactive anti-myelin oligodendrocyte glycoprotein antibodies differentiate demyelinating diseases from viral encephalitis in children. Mult Scler 17(3):297–302

    Article  CAS  PubMed  Google Scholar 

  • Lalive PH, Menge T, Delarasse C, Della Gaspera B, Pham-Dinh D, Villoslada P, von Büdingen HC, Genain CP (2006) Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple Sclerosis. Proc Natl Acad Sci U S A 103(7):2280–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 8(11):647–656

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (2014) Genetic control of nerve conduction velocity may influence multiple sclerosis phenotype. Am J Pathol 184(9):2369–2370

    Article  PubMed  Google Scholar 

  • Lee J, Gravel M, Zhang R, Thibault P, Braun PE (2005) Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol 170(4):661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leist T, Hunter SF, Kantor D, Markowitz C (2014) Novel therapeutics in multiple sclerosis management: clinical applications. Am J Med 127(1):S2

    Article  PubMed  Google Scholar 

  • Linker RA, Kieseier BC, Gold R (2008) Identification and development of new therapeutics for multiple sclerosis. Trends Pharmacol Sci 29(11):558–565

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Chen B, Song JH, Zhen T, Wang BY, Li X, Liu P, Yang X, Zhang QL, Xi XD, Chen SD, Zuo JP, Chen Z, Chen SJ (2013) Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Proc Natl Acad Sci U S A 110(6):2258–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubetzki C, Stankoff B (2014) Demyelination in multiple sclerosis. Handb Clin Neurol 122:89–99

    Article  PubMed  Google Scholar 

  • Luo Q, Sun Y, Gong FY, Liu W, Zheng W, Shen Y, Hua ZC, Xu Q (2014) Blocking initial infiltration of pioneer CD8+ T-cells into the CNS via inhibition of SHP-2 ameliorates experimental autoimmune encephalomyelitis in mice. Br J Pharmacol 171(7):1706–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mc Guire C, Beyaert R, van Loo G (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci 34(12):619–628

    Article  CAS  PubMed  Google Scholar 

  • McCarty KD, de Villis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3): 890–902.

  • Mestre C, Pélissier T, Fialip J, Wilcox G, Eschalier A (1994) A method to perform direct transcutaneous intrathecal injection in rats. J Pharmacol Toxicol Methods. 32(4):197–200

    Article  CAS  PubMed  Google Scholar 

  • Nitsch R, Bechmann I, Deisz RA, Haas D, Lehmann TN, Wendling U, Zipp F (2000) Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 356(9232):827–828

    Article  CAS  PubMed  Google Scholar 

  • Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reindl M, Linington C, Brehm U, Egg R, Dilitz E, Deisenhammer F, Poewe W, Berger T (1999) Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain 122:2047–2056

    Article  PubMed  Google Scholar 

  • Richter-Landsberg C (2000) The oligodendroglia cytoskeleton in health and disease. J Neurosci Res 59(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Sajad M, Chawla R, Zargan J, Umar S, Sadaqat M, Khan HA (2011c) Cytokinetics of adult rat SVZ after EAE. Brain Res 1371:140–149

    Article  CAS  PubMed  Google Scholar 

  • Sajad M, Zargan J, Chawla R, Umar S, Khan HA (2011a) Upregulation of CSPG3 accompanies neuronal progenitor proliferation and migration in EAE. J Mol Neurosci 43(3):531–540

    Article  CAS  PubMed  Google Scholar 

  • Sajad M, Zargan J, Sharma J, Chawla R, Arora R, Umar S, Khan HA (2011b) Increased spontaneous apoptosis of rat primary neurospheres in vitro after experimental autoimmune encephalomyelitis. Neurochem Res 36(6):1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Stefferl A, Brehm U, Linington C (2000) The myelin oligodendrocyte glycoprotein (MOG): a model for antibody-mediated demyelination in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neural Transm Suppl 58:123–133

Download references

Acknowledgments

Authors are thankful to Dr. G.N Qazi (Vice Chancellor, Jamia Hamdard) for the moral support during the course of the study. Mir Sajad was Postdoctoral Research Associate (Grant no-81/4/2009-BM-Stem Cell), Indian Council of Medical Research (ICMR) Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Mir.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest for the publication

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, S., Ali, F., Chauhan, D. et al. Accumulation of reactivity to MBP sensitizes TRAIL mediated oligodendrocyte apoptosis in adult sub cortical white matter in a model for human multiple sclerosis. Metab Brain Dis 31, 299–309 (2016). https://doi.org/10.1007/s11011-015-9750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9750-5

Keywords

Navigation