Skip to main content
Log in

Neuroprotective activity of hydroponic Teucrium polium following bilateral ovariectomy

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Ovariectomy is known as “surgical menopause” with decreased levels of estrogen in female rodents. Its reported risks and adverse effects include cognitive impairment. The action of hydroponic Teucrium polium on nucleus basalis of Meynert (bnM) neurons following 6 weeks of ovariectomy was carried out. The analysis of spike activity was observed by on-line selection and the use of a software package. Early and late tetanic, − posttetanic potentiation and depression of neurons to high frequency stimulation of hippocampus were studied. The complex averaged peri-event time and frequency histograms were constructed. The histochemical study of the activity of Са2+-dependent acid phosphatase was observed. In conditions of hydroponic Teucrium polium administration, positive changes in neurons and gain of metabolism leading to cellular survival were revealed. The administration of Teucrium polium elicited neurodegenerative changes in bnM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anukulthanakorn K, Malaivijitnond S, Kitahashi T, Jaroenporn S, Parhar I (2013) Molecular events during the induction of neurodegeneration and memory loss in estrogen-deficient rats. Gen Comp Endocrinol 181:316–323

    Article  CAS  PubMed  Google Scholar 

  • Chavushyan V, Simonyan K, Galstyan H (2010) Toxicity studies of Teucrium polium lamiaceae growing in nature and in culture. The Second International symposium “Biopharma 2010: from science to industry” May 17–20 Armenia. -Yerevan 2010.- P.11, 45

  • Craig MC, Brammer M, Maki PM, Fletcher PC, Daly EM, Rymer J, Giampietro V, Picchioni M, Stahl D, Murphy DG (2010) The interactive effect of acute ovarian suppression and the cholinergic system on visuospatial working memory in young women. Psychoneuroendocrinology 7:987–1000

    Article  Google Scholar 

  • D’Abrosca B, Pacifico S, Scognamiglio M, D’Angelo G, Galasso S, Monaco P, Fiorentino A (2013) A new acylated flavone glycoside with antioxidant and radical scavenging activities from Teucrium polium leaves. Nat Prod Res 4–5:356–363

    Article  Google Scholar 

  • Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A (2003) Neuroprotection by flavonoids. Braz J Med Biol Res 12:1613–1620

    Article  Google Scholar 

  • Dajas F, Andrés AC, Florencia A, Carolina E, Felicia RM (2013) Neuroprotective actions of flavones and flavonols: mechanisms and relationship to flavonoid structural features. Cent Nerv Syst Agents Med Chem 1:30–35

    Article  Google Scholar 

  • Decker MW, McGaugh JL (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 2:151–168

    Article  Google Scholar 

  • Doi A, Ishibashi H, Jinno S, Kosaka T, Akaike N (2002) Presynaptic inhibition of GABAergic miniature currents by metabotropic glutamate receptor in the rat CNS. Neuroscience 2:299–311

    Article  Google Scholar 

  • Giovannini MG, Rakovska A, Benton RS, Pazzagli M, Bianchi L, Pepeu G (2001) Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 1:43–53

    Article  Google Scholar 

  • Hernandez I, Delgado JL, Díaz J, Quesada T, Teruel MJG, Carmen-Llanos M, Carbonell LF (2000) 17β-Estradiol prevents oxidative stress and decreases blood pressure in ovariectomized rats. Am J Physiol 279:R1599–R1605

    CAS  Google Scholar 

  • Howes MJR, Perry NSL, Houghton PJ (2003) Plants with traditional uses and activities relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res 17:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Hou TT, Zhang QY, Xin HL, Zheng HC, Rahman K, Qin LP (2007) Evaluation of the estrogenic activity of the constituents in the fruits of Vitex rotundifolia L. for the potential treatment of premenstrual syndrome. J Pharm Pharmacol 9:1307–1312

    Article  Google Scholar 

  • Ibrahim NA, Shalaby AS, Farag RS, Elbaroty GS, Nofal SM, Hassan EM (2008) Gynecological efficacy and chemical investigation of Vitex agnus-castus L. fruits growing in Egypt. Nat Prod Res 6:537–546

    Article  Google Scholar 

  • Jang S, Dilger RN, Johnson RW (2010) Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. J Nutr 10:1892–1898

    Article  Google Scholar 

  • Johnston GA (2005) GABA(A) receptor channel pharmacology. Curr Pharm Des 15:1867–1885

    Article  Google Scholar 

  • Kadifkova-Panovska T, Kulevanova S, Stefova M (2005) In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm 55:207–214

    PubMed  Google Scholar 

  • Kawai H, ZagoW BDK (2002) Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 22:7903–7912

    CAS  PubMed  Google Scholar 

  • Koo KA, Sung SH, Park JH, Kim SH, Lee KY, Kim YC (2005) In vitro neuroprotective activities of phenylethanoid glycosides from Callicarpa dichotoma. Planta Med 8:778–780

    Article  Google Scholar 

  • Larson J, Lynch G, Games D, Seubert P (1999) Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 1–2:23–35

    Article  Google Scholar 

  • Liu R, Gao M, Qiang GF, Zhang TT, Lan X, Ying J, Du GH (2009) The anti-amnesic effects of luteolin against amyloid beta(25–35) peptide-induced toxicity in mice involve the protection of neurovascular unit. Neuroscience 4:1232–1243

    Article  Google Scholar 

  • Liu L, Su Y, Yang W, Xiao M, Gao J, Hu G (2010) Disruption of neuronal-glial-vascular units in the hippocampus of ovariectomized mice injected with D-galactose. Neuroscience 2:596–608

    Article  Google Scholar 

  • Liu R, Zhang T, Yang H, Lan X, Ying J, Du G (2011) The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25-35-induced toxicity in mice. J Alzheimers Dis 1:85–100

    Google Scholar 

  • Losi G, Puia G, Garzon G, de Vuono MC, Baraldi M (2004) Apigenin modulates GABAergic and glutamatergic transmission in cultured cortical neurons. Eur J Pharmacol 1–2:41–46

    Article  Google Scholar 

  • Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012a) Glutamatergic synapse formation is promoted by a7-con-taining nicotinic acetylcholine receptors. J Neurosci 32:7651–7661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lozada AF, Wang X, Gounko NV, Massey KA, Duan J, Liu Z, Berg DK (2012b) Induction of dendritic spines by b2-containing nicotinic receptors. J Neurosci 32:8391–8400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luine V, Frankfurt M (2012) Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience 239:34–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Meliksetyan IB (2007) A revelation Са2+−dependent acidic phosphatase in cellular structions of the rat brain. Morphology (s-t Peterburg) 2:77–80

    Google Scholar 

  • Meng Y, Wang R, Yang F, Ji ZJ, Fang L, Sheng SL (2010) Amyloid precursor protein 17-mer peptide ameliorates hippocampal neurodegeneration in ovariectomized rats. Neurosci Lett 3:173–177

    Article  Google Scholar 

  • Navarrete M, Perea G, Maglio L, Pastor J, García de Sola R, Araque A (2013) Astrocyte Calcium Signal and Gliotransmission in Human Brain Tissue. Cereb Cortex 5:1240–1246

    Article  Google Scholar 

  • Orhan I, Aslan M (2009) Appraisal of scopolamine-induced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants. J Ethnopharmacol 122:327–332

    Article  PubMed  Google Scholar 

  • Perry N, Court G, Bidet N et al (1996) Cholinergic activities of European herbs and potential for dementia therapy. J Geriatr Psychiatry 11:1063–1069

    Article  Google Scholar 

  • Pesavento E, Capsoni S, Domenici L, Cattaneo A (2002) Acute cholinergic rescue of synaptic plasticity in the neurodegenerating cortex of anti-nerve-growth-factor mice. Eur J Neurosci 6:1030–1036

    Article  Google Scholar 

  • Ping SE, Trieu J, Wlodek ME, Barrett GL (2008) Effects of estrogen on basal forebrain cholinergic neurons and spatial learning. J Neurosci Res 7:1588–1598

    Article  Google Scholar 

  • Proestos C, Sereli D, Komaitis M (2006) Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chem 95:44–52

    Article  CAS  Google Scholar 

  • Rapkin AJ, Akopians AL (2012) Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder. Menopause Int 2:52–59

    Google Scholar 

  • Rezai-Zadeh K, Ehrhart J, Bai Y, Sanberg PR, Bickford P, Tan J, Shytle RD (2009) Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation 5:41

    Article  Google Scholar 

  • Rissman RA, De Blas AL, Armstrong DM (2007) GABAA receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    Article  CAS  PubMed  Google Scholar 

  • Tsai FS, Peng WH, Wang WH, Wu CR, Hsieh CC, Lin YT, Feng IC, Hsieh MT (2007) Effects of luteolin on learning acquisition in rats: involvement of the central cholinergic system. Life Sci 18:1692–1698

    Article  Google Scholar 

  • Taupin P (2009) Apigenin and related compounds stimulate adult neurogenesis. Mars, Inc., the Salk Institute for Biological Studies. Expert Opin Ther Pat 4: 523–527

  • Unal D, Halici Z, Altunkaynak Z, Keles ON, Oral E, Unal B (2012) A new hypothesis about neuronal degeneration appeared after a rat model of menopause. Neurodegener Dis 1:25–30

    Article  Google Scholar 

  • Wenk GL (1984) Pharmacological manipulations of the substantia innominata-cortical cholinergic pathway. Neurosci Lett 1:99–103

    Article  Google Scholar 

  • Wenk H, Bigl V, Meyer U (1980) Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Res 2:295–316

    Article  CAS  PubMed  Google Scholar 

  • Xu XW, Shi C, He ZQ, Ma CM, Chen WH, Shen YP, Guo Q, Shen CJ, Xu J (2008) Effects of phytoestrogen on mitochondrial structure and function of hippocampal CA1 region of ovariectomized rats. Cell Mol Neurobiol 6:875–886

    Article  Google Scholar 

  • Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, Tsim KW (2013) Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med 2013:127075

    PubMed Central  PubMed  Google Scholar 

  • Yenkoyan K, Safaryan K, Chavushyan V, Meliksetyan I, Navasardyan G, Sarkissian J, Galoyan A, Aghajanov M (2011) Neuroprotective action of proline-rich polypeptide-1 in β-amyloid induced neurodegeneration in rats. Brain Res Bull 86:262–271

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med 36:592–604

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Mao Z, Brinton RD (2009) A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 2:770–783

    Article  Google Scholar 

  • Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 8:9949–9965

    Article  Google Scholar 

  • Zhu R, Ge B, Yang B, Chen K, Wen Y, Zhou J, Han G, Cheng G, Zhai Y (2012) Study on estrogenic effect of genistein and apigenin in vitro. Zhongguo Zhong Yao Za Zhi 15:2317–2322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Simonyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonyan, K.V., Chavushyan, V.A. Neuroprotective activity of hydroponic Teucrium polium following bilateral ovariectomy. Metab Brain Dis 30, 785–792 (2015). https://doi.org/10.1007/s11011-014-9640-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9640-2

Keywords

Navigation