Skip to main content
Log in

Single-cell RNA sequencing technology in human spermatogenesis: Progresses and perspectives

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Spermatogenesis, a key part of the spermiation process, is regulated by a combination of key cells, such as primordial germ cells, spermatogonial stem cells, and somatic cells, such as Sertoli cells. Abnormal spermatogenesis can lead to azoospermia, testicular tumors, and other diseases related to male infertility. The application of single-cell RNA sequencing (scRNA-seq) technology in male reproduction is gradually increasing with its unique insight into deep mining and analysis. The data cover different periods of neonatal, prepubertal, pubertal, and adult stages. Different types of male infertility diseases including obstructive and non-obstructive azoospermia (NOA), Klinefelter Syndrome (KS), Sertoli Cell Only Syndrome (SCOS), and testicular tumors are also covered. We briefly review the principles and application of scRNA-seq and summarize the research results and application directions in spermatogenesis in different periods and pathological states. Moreover, we discuss the challenges of applying this technology in male reproduction and the prospects of combining it with other technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created in this study.

Abbreviations

APLN/APJ:

Apelin peptide/Apelin-receptor

DMR:

Differentially methylated region

GCNA:

Germ-cell nuclear antigen

hPGC:

Human primordial germ cell

KS:

Klinefelter syndrome

MMLV:

Moloney murine leukemia virus

NOA:

Non-obstructive azoospermia

OA:

Obstructive azoospermia

PGC:

Primordial germ cell

SCOS:

Sertoli cell only syndrome

scRNA-seq:

Single-cell RNA sequencing

SNP:

Single nucleotide polymorphism

SSC:

Spermatogonial stem cell

T2DM:

Type 2 diabetes mellitus

TF:

Transcription factor

TSO:

Template-switching oligo

UMI:

Unique molecular indentifier

References

  1. Carrageta DF, Guerra-Carvalho B, Spadella MA, Yeste M, Oliveira PF, Alves MG (2022) Animal models of male reproductive ageing to study testosterone production and spermatogenesis. Rev Endocr Metab Disord 23:1341–1360. https://doi.org/10.1007/s11154-022-09726-9

    Article  CAS  PubMed  Google Scholar 

  2. Shima Y (2022) Functional importance of mini-puberty in spermatogenic stem cell formation. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.907989

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clermont Y (1966) Spermatogenesis in Man. Fertil. Steril.

  4. Griswold MD (2016) Spermatogenesis: the commitment to meiosis. Physiol Rev 96:1–17. https://doi.org/10.1152/physrev.00013.2015

    Article  CAS  PubMed  Google Scholar 

  5. Ishikura Y, Ohta H, Sato T, Murase Y, Yabuta Y, Kojima Y, Yamashiro C, Nakamura T, Yamamoto T, Ogawa T, Saitou M (2021) In vitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.08.005

    Article  PubMed  Google Scholar 

  6. Hess RA, Renato de Franca L (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15. https://doi.org/10.1007/978-0-387-09597-4_1

    Article  PubMed  Google Scholar 

  7. Yao M, Qu H, Han Y, Cheng CY, Xiao X (2022) Kinesins in mammalian spermatogenesis and germ cell transport. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2022.837542

    Article  PubMed  PubMed Central  Google Scholar 

  8. Washburn RL, Hibler T, Kaur G, Dufour JM (2022) Sertoli cell immune regulation: a double-edged sword. Front Immunol. https://doi.org/10.3389/fimmu.2022.913502

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nie X, Munyoki SK, Sukhwani M, Schmid N, Missel A, Emery BR, DonorConnect SJB, Mayerhofer A, Orwig KE, Aston KI, Hotaling JM, Cairns BR, Guo J (2022) Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev Cell. https://doi.org/10.1016/j.devcel.2022.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen P, Zirkin BR, Chen H (2020) Stem leydig cells in the adult testis: characterization, regulation and potential applications. Endocr Rev 41:22–32. https://doi.org/10.1210/endrev/bnz013

    Article  PubMed  Google Scholar 

  11. Choy KHK, Chan SY, Lam W, Jin J, Zheng T, Law TYS, Yu SS, Wang W, Li L, Xie G, Yim HCH, Chen H, Fok EKL (2022) The repertoire of testicular extracellular vesicle cargoes and their involvement in inter-compartmental communication associated with spermatogenesis. BMC Biol 20:78. https://doi.org/10.1186/s12915-022-01268-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guan X, Ji M, Wen X, Huang F, Zhao X, Chen D, Shao J, Wang J, Xie J, Tian J, Lin H, Duan P, Zirkin BR, Su Z, Chen H (2022) Single-cell RNA sequencing of adult rat testes after Leydig cell elimination and restoration. Sci Data 9:106. https://doi.org/10.1038/s41597-022-01225-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Li Y, Zhu L, Jin H, Kang X, Feng Z (2023) Single-cell RNA sequencing in the context of neuropathic pain: progress, challenges, and prospects. Transl Res 251:96–103. https://doi.org/10.1016/j.trsl.2022.07.004

    Article  CAS  PubMed  Google Scholar 

  14. Hoft SG, Pherson MD, DiPaolo RJ (2022) Discovering immune-mediated mechanisms of gastric carcinogenesis through single-cell RNA sequencing. Front Immunol. https://doi.org/10.3389/fimmu.2022.902017

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. https://doi.org/10.1002/ctm2.694

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/nmeth.1315

    Article  CAS  PubMed  Google Scholar 

  17. Hicks SC, Townes FW, Teng M, Irizarry RA (2018) Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19:562–578. https://doi.org/10.1093/biostatistics/kxx053

    Article  PubMed  Google Scholar 

  18. Zhang QY, Ho DW, Tsui YM, Ng IO (2022) Single-cell transcriptomics of liver cancer: hype or insights? Cell Mol Gastroenterol Hepatol 14:513–525. https://doi.org/10.1016/j.jcmgh.2022.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramskold D, Luo SJ, Wang YC, Li R, Deng QL, Faridani OR, Daniels GA, Khrebtukova I, Loring JF, Laurent LC, Schroth GP, Sandberg R (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782. https://doi.org/10.1038/nbt.2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang YJ, Wang D, Peng M, Tang L, Ouyang JW, Xiong F, Guo C, Tang YY, Zhou YJ, Liao QJ, Wu X, Wang H, Yu JJ, Li Y, Li XL, Li GY, Zeng ZY, Tan YX, Xiong W (2021) Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-021-01874-1

    Article  PubMed  PubMed Central  Google Scholar 

  21. Picelli S (2017) Single-cell RNA-sequencing: The future of genome biology is now. RNA Biol 14:637–650. https://doi.org/10.1080/15476286.2016.1201618

    Article  PubMed  Google Scholar 

  22. Goetz JJ, Trimarchi JM (2012) Transcriptome sequencing of single cells with Smart-Seq. Nat Biotechnol 30:763–765. https://doi.org/10.1038/nbt.2325

    Article  CAS  PubMed  Google Scholar 

  23. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098. https://doi.org/10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  24. Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  25. Picelli S (2019) Full-Length Single-Cell RNA Sequencing with Smart-seq2. In: Proserpio V (ed) Single Cell Methods: Sequencing and Proteomics, pp. 25–44

  26. Hagemann-Jensen M, Ziegenhain C, Chen P, Ramskold D, Hendriks GJ, Larsson AJM, Faridani OR, Sandberg R (2020) Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol 38:708. https://doi.org/10.1038/s41587-020-0497-0

    Article  CAS  PubMed  Google Scholar 

  27. Hagemann-Jensen M, Ziegenhain C and Sandberg R Scalable single-cell RNA sequencing from full transcripts with Smart-seq3xpress. Nature Biotechnology. doi: https://doi.org/10.1038/s41587-022-01311-4

  28. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schekman R (2010) Editorial Expression of Concern for multiple articles. Proc Natl Acad Sci U S A 107:6551. https://doi.org/10.1073/pnas.1003210107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bageritz J, Raddi G (2019) Single-cell RNA sequencing with drop-seq. Methods Mol Biol 1979:73–85. https://doi.org/10.1007/978-1-4939-9240-9_6

    Article  CAS  PubMed  Google Scholar 

  33. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620. https://doi.org/10.1016/j.molcel.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  34. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L (2017) Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc 12:44–73. https://doi.org/10.1038/nprot.2016.154

    Article  CAS  PubMed  Google Scholar 

  35. Han Y, Wang D, Peng L, Huang T, He X, Wang J, Ou C (2022) Single-cell sequencing: a promising approach for uncovering the mechanisms of tumor metastasis. J Hematol Oncol 15:59. https://doi.org/10.1186/s13045-022-01280-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kedar N, Natarajan, (2019) Single-cell tagged reverse transcription (STRT-Seq). Methods Mol Biol 1979:133–153

    Article  Google Scholar 

  37. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P, Linnarsson S (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167. https://doi.org/10.1101/gr.110882.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gla B, Qian GB, Sz A, Bo YA (2020) Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives - ScienceDirect. Comput Struct Biotechnol J 18:2962–2971

    Article  Google Scholar 

  39. Kivioja T, Vhrautio A, Karlsson K, Bonke M, Taipale J (2011) Counting absolute number of molecules using unique molecular identifiers. Nat Prec. https://doi.org/10.1038/npre.2011.5903.1

    Article  Google Scholar 

  40. Tang DT, Plessy C, Salimullah M, Suzuki AM, Calligaris R, Gustincich S, Carninci P (2013) Suppression of artifacts and barcode bias in high-throughput transcriptome analyses utilizing template switching. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1128

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fan HC, Fu GK, Fodor SP (2015) Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. https://doi.org/10.1126/science.1258367

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gierahn TM, Wadsworth MH 2nd, Hughes TK, Bryson BD, Butler A, Satija R, Fortune S, Love JC, Shalek AK (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14:395–398. https://doi.org/10.1038/nmeth.4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC (2012) Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A 109:1607–1612. https://doi.org/10.1073/pnas.1117194109

    Article  PubMed  Google Scholar 

  44. Yamanaka YJ, Berger CT, Sips M, Cheney PC, Alter G, Love JC (2012) Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr Biol (Camb) 4:1175–1184. https://doi.org/10.1039/c2ib20167d

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, Huang Y, Wang J (2019) Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-Seq systems. Mol Cell. https://doi.org/10.1016/j.molcel.2018.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell. https://doi.org/10.1016/j.molcel.2017.01.023

    Article  PubMed  Google Scholar 

  47. Wang X, He Y, Zhang Q, Ren X, Zhang Z (2021) Direct comparative analyses of 10X genomics chromium and smart-seq2. Genom Proteomics Bioinform 19:253–266. https://doi.org/10.1016/j.gpb.2020.02.005

    Article  CAS  Google Scholar 

  48. Zhang M, Zou Y, Xu X, Zhang X, Gao M, Song J, Huang P, Chen Q, Zhu Z, Lin W, Zare RN, Yang C (2020) Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nat Commun 11:2118. https://doi.org/10.1038/s41467-020-15765-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA (2016) Specification and epigenetic programming of the human germ line. Nat Rev Genet 17:585–600. https://doi.org/10.1038/nrg.2016.88

    Article  CAS  PubMed  Google Scholar 

  50. Hancock GV, Wamaitha SE, Peretz L, Clark AT (2021) Mammalian primordial germ cell specification. Development. https://doi.org/10.1242/dev.189217

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y, Wang W, Li R, Yan J, Zhi X, Zhang Y, Jin H, Zhang W, Hou Y, Zhu P, Li J, Zhang L, Liu S, Ren Y, Zhu X, Wen L, Gao YQ, Tang F, Qiao J (2015) The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161:1437–1452. https://doi.org/10.1016/j.cell.2015.05.015

    Article  CAS  PubMed  Google Scholar 

  52. Pierson Smela M, Sybirna A, Wong FCK, Surani MA (2019) Testing the role of SOX15 in human primordial germ cell fate. Wellcome open research 4:122–122. https://doi.org/10.12688/wellcomeopenres.15381.1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M, Tao Y, Zheng Y, Fu J, Liu W, Kellis M, Clark A (2019) Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep 29:4568. https://doi.org/10.1016/j.celrep.2019.11.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang WWC, Castillo-Venzor A, Gruhn WH, Kobayashi T, Penfold CA, Morgan MD, Sun D, Irie N, Surani MA (2022) Sequential enhancer state remodelling defines human germline competence and specification. Nat Cell Biol 24:448–460. https://doi.org/10.1038/s41556-022-00878-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma S, Wistuba J, Pock T, Schlatt S, Neuhaus N (2019) Spermatogonial stem cells: updates from specification to clinical relevance. Hum Reprod Update 25:275–297. https://doi.org/10.1093/humupd/dmz006

    Article  CAS  PubMed  Google Scholar 

  56. Tan K, Wilkinson MF (2020) A single-cell view of spermatogonial stem cells. Curr Opin Cell Biol 67:71–78. https://doi.org/10.1016/j.ceb.2020.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, Murphy PJ, Wike CL, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2017) Chromatin and single-cell RNA-Seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell. https://doi.org/10.1016/j.stem.2017.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2018) The adult human testis transcriptional cell atlas. Cell Res 28:1141–1157. https://doi.org/10.1038/s41422-018-0099-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hermann BP, Cheng K, Singh A, Roa-De la Cruz L, Mutoji KN, Chen IC, Gildersleeve H, Lehle JD, Mayo M, Westernstroer B, Law NC, Oatley MJ, Velte EK, Niedenberger BA, Fritze D, Silber S, Geyer CB, Oatley JM, McCarrey JR (2018) The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25:1650. https://doi.org/10.1016/j.celrep.2018.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L, Hsieh TC, Rabah R, Hammoud SS, Vicini E, Wilkinson MF (2019) The neonatal and adult human testis defined at the single-cell level. Cell Rep 26:1501. https://doi.org/10.1016/j.celrep.2019.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Law NC, Oatley MJ, Oatley JM (2019) Developmental kinetics and transcriptome dynamics of stem cell specification in the spermatogenic lineage. Nat Commun. https://doi.org/10.1038/s41467-019-10596-0

    Article  PubMed  PubMed Central  Google Scholar 

  62. Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E, Plath K, Hotaling JM, Stukenborg J-B, Clark AT, Cairns BR, DonorConnect, (2021) Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28:764. https://doi.org/10.1016/j.stem.2020.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xia B, Yan Y, Baron M, Wagner F, Barkley D, Chiodin M, Kim SY, Keefe DL, Alukal JP, Boeke JD, Yanai I (2020) Widespread transcriptional scanning in the testis modulates gene evolution rates. Cell. https://doi.org/10.1016/j.cell.2019.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  64. La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, Park JH, Hong K (2021) Insights from the applications of single-cell transcriptomic analysis in germ cell development and reproductive medicine. Int J Mol Sci. https://doi.org/10.3390/ijms22020823

    Article  PubMed  PubMed Central  Google Scholar 

  65. Guo J, Nie X, Giebler M, Mlcochova H, Wang Y, Grow EJ, DonorConnect KR, Tharmalingam M, Matilionyte G, Lindskog C, Carrell DT, Mitchell RT, Goriely A, Hotaling JM, Cairns BR (2020) The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell. https://doi.org/10.1016/j.stem.2019.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  66. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420. https://doi.org/10.1038/nbt.4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao L, Yao C, Xing X, Jing T, Li P, Zhu Z, Yang C, Zhai J, Tian R, Chen H, Luo J, Liu N, Deng Z, Lin X, Li N, Fang J, Sun J, Wang C, Zhou Z, Li Z (2020) Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat Commun 11:5683. https://doi.org/10.1038/s41467-020-19414-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M (2019) Testicular aging: an overview of ultrastructural, cellular, and molecular alterations. J Gerontol A Biol Sci Med Sci 74:860–871. https://doi.org/10.1093/gerona/gly082

    Article  CAS  PubMed  Google Scholar 

  69. Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, Baumbauer KM (2019) TIMP-1 attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms. Front Mol Neurosci 12:220. https://doi.org/10.3389/fnmol.2019.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oliveira PF, Alves MG (2015) The Sertoli Cell at a Glance. In: Oliveira PF, Alves MG (eds) Sertoli Cell Metabolism and Spermatogenesis. Springer, Cham, pp 3–13

    Chapter  Google Scholar 

  71. Salomon TB, Hackenhaar FS, Almeida AC, Schuller AK, Gil Alabarse PV, Ehrenbrink G, Benfato MS (2013) Oxidative stress in testis of animals during aging with and without reproductive activity. Exp Gerontol 48:940–946. https://doi.org/10.1016/j.exger.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  72. Cao L, Leers-Sucheta S, Azhar S (2004) Aging alters the functional expression of enzymatic and non-enzymatic anti-oxidant defense systems in testicular rat Leydig cells. J Steroid Biochem Mol Biol 88:61–67. https://doi.org/10.1016/j.jsbmb.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  73. Niederberger C (2017) Re: clinical, genetic, biochemical, and testicular biopsy findings among 1213 men evaluated for infertility. J Urol 198:468–470. https://doi.org/10.1016/j.juro.2017.06.043

    Article  PubMed  Google Scholar 

  74. Skakkebaek NE (1969) Two types of tubules containing only Sertoli cells in adults with Klinefelter’s syndrome. Nature 223:643–645. https://doi.org/10.1038/223643a0

    Article  CAS  PubMed  Google Scholar 

  75. Tiepolo L, Zuffardi O (1976) Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet 34:119–124. https://doi.org/10.1007/BF00278879

    Article  CAS  PubMed  Google Scholar 

  76. Wang M, Xu Y, Zhang Y, Chen Y, Chang G, An G, Yang X, Zheng C, Zhao J, Liu Z, Wang D, Miao K, Rao S, Dai M, Wang D, Zhao XY (2021) Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics 11:5010–5027. https://doi.org/10.7150/thno.55645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang M, Liu X, Chang G, Chen Y, An G, Yan L, Gao S, Xu Y, Cui Y, Dong J, Chen Y, Fan X, Hu Y, Song K, Zhu X, Gao Y, Yao Z, Bian S, Hou Y, Lu J, Wang R, Fan Y, Lian Y, Tang W, Wang Y, Liu J, Zhao L, Wang L, Liu Z, Yuan R, Shi Y, Hu B, Ren X, Tang F, Zhao XY, Qiao J (2018) Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell. https://doi.org/10.1016/j.stem.2018.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen S, An G, Wang H, Wu X, Ping P, Hu L, Chen Y, Fan J, Cheng CY, Sun F (2022) Human obstructive (postvasectomy) and nonobstructive azoospermia - Insights from scRNA-Seq and transcriptome analysis. Genes Dis 9:766–776. https://doi.org/10.1016/j.gendis.2020.09.004

    Article  CAS  PubMed  Google Scholar 

  79. Di Persio S, Leitao E, Woste M, Tekath T, Cremers JF, Dugas M, Li X, Horste MZ, G, Kliesch S, Laurentino S, Neuhaus N and Horsthemke B, (2021) Whole-genome methylation analysis of testicular germ cells from cryptozoospermic men points to recurrent and functionally relevant DNA methylation changes. Clin Epigenetics 13:160. https://doi.org/10.1186/s13148-021-01144-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bhargava V, Goldstein CD, Russell L, Xu L, Ahmed M, Li W, Casey A, Servage K, Kollipara R, Picciarelli Z, Kittler R, Yatsenko A, Carmell M, Orth K, Amatruda JF, Yanowitz JL, Buszczak M (2020) GCNA preserves genome integrity and fertility across species. Dev Cell. https://doi.org/10.1016/j.devcel.2019.11.007

    Article  PubMed  Google Scholar 

  81. Dokshin GA, Davis GM, Sawle AD, Eldridge MD, Nicholls PK, Gourley TE, Romer KA, Molesworth LW, Tatnell HR, Ozturk AR, de Rooij DG, Hannon GJ, Page DC, Mello CC, Carmell MA (2020) GCNA interacts with spartan and topoisomerase II to regulate genome stability. Dev Cell. https://doi.org/10.1016/j.devcel.2019.11.006

    Article  PubMed  Google Scholar 

  82. Hardy JJ, Wyrwoll MJ, McFadden W, Malcher A, Rotte N, Pollock NC, Munyoki S, Veroli MV, Houston BJ, Xavier MJ, Kasak L, Punab M, Laan M, Kliesch S, Schlegel P, Jaffe T, Hwang K, Vukina J, Brieno-Enriquez MA, Orwig K, Yanowitz J, Buszczak M, Veltman JA, Oud M, Nagirnaja L, Olszewska M, O’Bryan MK, Conrad DF, Kurpisz M, Tuttelmann F, Yatsenko AN and Consortium G (2021) Variants in GCNA, X-linked germ-cell genome integrity gene, identified in men with primary spermatogenic failure. Hum Genet 140:1169–1182. https://doi.org/10.1007/s00439-021-02287-y

    Article  CAS  Google Scholar 

  83. Nagirnaja L, Lopes AM, Charng WL, Miller B, Stakaitis R, Golubickaite I, Stendahl A, Luan T, Friedrich C, Mahyari E, Fadial E, Kasak L, Vigh-Conrad K, Oud MS, Xavier MJ, Cheers SR, James ER, Guo J, Jenkins TG, Riera-Escamilla A, Barros A, Carvalho F, Fernandes S, Goncalves J, Gurnett CA, Jorgensen N, Jezek D, Jungheim ES, Kliesch S, McLachlan RI, Omurtag KR, Pilatz A, Sandlow JI, Smith J, Eisenberg ML, Hotaling JM, Jarvi KA, Punab M, Rajpert-De Meyts E, Carrell DT, Krausz C, Laan M, O’Bryan MK, Schlegel PN, Tuttelmann F, Veltman JA, Almstrup K, Aston KI, Conrad DF (2022) Diverse monogenic subforms of human spermatogenic failure. Nat Commun 13:7953. https://doi.org/10.1038/s41467-022-35661-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Klinefelter HF, Reifenstein EC, Albright F (1942) Syndrome characterized by gynecomastia, aspermatogenesis without A-Leydigism, and increased excretion of follicle-stimulating hormone1. J Clin Endocrinol Metabolism 2:615–627. https://doi.org/10.1210/jcem-2-11-615

    Article  CAS  Google Scholar 

  85. Lanfranco F, Kamischke A, Zitzmann M and Nieschlag E (2004) Klinefelter\"s syndrome. 364:0–283.

  86. Jacobs PA, Strong JA (1959) A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183:302–303. https://doi.org/10.1038/183302a0

    Article  CAS  PubMed  Google Scholar 

  87. Navarro-Cobos MJ, Balaton BP, Brown CJ (2020) Genes that escape from X-chromosome inactivation: Potential contributors to Klinefelter syndrome. Am J Med Genet C Semin Med Genet 184:226–238. https://doi.org/10.1002/ajmg.c.31800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Astro V, Alowaysi M, Fiacco E, Saera-Vila A, Cardona-Londono KJ, Aiese Cigliano R, Adamo A (2021) Pseudoautosomal region 1 overdosage affects the global transcriptome in iPSCs from patients with klinefelter syndrome and high-grade X chromosome aneuploidies. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.801597

    Article  PubMed  Google Scholar 

  89. He H, Huang T, Yu F, Chen K, Guo S, Zhang L, Tang X, Yuan X, Liu J, Zhou Y (2022) KIF2C affects sperm cell differentiation in patients with Klinefelter syndrome, as revealed by RNA-Seq and scRNA-Seq data. FEBS Open Bio 12:1465–1474. https://doi.org/10.1002/2211-5463.13446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ritter A, Kreis NN, Louwen F, Wordeman L, Yuan J (2015) Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol 51:228–245. https://doi.org/10.1080/10409238.2016.1178705

    Article  CAS  PubMed  Google Scholar 

  91. Ems-McClung SC, Hertzer KM, Zhang X, Miller MW, Walczak CE (2007) The interplay of the N- and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly. Mol Biol Cell 18:282–294. https://doi.org/10.1091/mbc.e06-08-0724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Santi D, De Vincentis S, Magnani E, Spaggiari G (2017) Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology 5:695–703. https://doi.org/10.1111/andr.12379

    Article  CAS  PubMed  Google Scholar 

  93. Laurentino S, Heckmann L, Di Persio S, Li X, Horste MZ, G, Wistuba J, Cremers JF, Gromoll J, Kliesch S, Schlatt S and Neuhaus N, (2019) High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin Epigenetics 11:127. https://doi.org/10.1186/s13148-019-0720-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Winge SB, Soraggi S, Schierup MH, Rajpert-De Meyts E, Almstrup K (2020) Integration and reanalysis of transcriptomics and methylomics data derived from blood and testis tissue of men with 47, XXY Klinefelter syndrome indicates the primary involvement of Sertoli cells in the testicular pathogenesis. Am J Med Genet C Semin Med Genet 184:239–255. https://doi.org/10.1002/ajmg.c.31793

    Article  CAS  PubMed  Google Scholar 

  95. Mahyari E, Guo J, Lima AC, Lewinsohn DP, Stendahl AM, Vigh-Conrad KA, Nie X, Nagirnaja L, Rockweiler NB, Carrell DT, Hotaling JM, Aston KI, Conrad DF (2021) Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. Am J Hum Genet 108:1924–1945. https://doi.org/10.1016/j.ajhg.2021.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Panda R, Kalmady SV, Greiner R (2022) Multi-source domain adaptation techniques for mitigating batch effects: a comparative study. Front Neuroinform. https://doi.org/10.3389/fninf.2022.805117

    Article  PubMed  PubMed Central  Google Scholar 

  97. Siniscalchi C, Di Palo A, Russo A, Potenza N (2022) The lncRNAs at X chromosome inactivation center: not just a matter of sex dosage compensation. Int J Mol Sci. https://doi.org/10.3390/ijms23020611

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ferlin A, Arredi B, Speltra E, Cazzadore C, Selice R, Garolla A, Lenzi A, Foresta C (2007) Molecular and clinical characterization of Y chromosome microdeletions in infertile men: a 10-year experience in Italy. J Clin Endocrinol Metab 92:762–770. https://doi.org/10.1210/jc.2006-1981

    Article  CAS  PubMed  Google Scholar 

  99. Mistry BV, Zhao Y, Chang TC, Yasue H, Chiba M, Oatley J, Diaz F, Liu WS (2013) Differential expression of PRAMEL1, a cancer/testis antigen, during spermatogenesis in the mouse. PLoS ONE. https://doi.org/10.1371/journal.pone.0060611

    Article  PubMed  PubMed Central  Google Scholar 

  100. Birtle Z, Goodstadt L, Ponting C (2005) Duplication and positive selection among hominin-specific PRAME genes. BMC Genomics 6:120. https://doi.org/10.1186/1471-2164-6-120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Joshi S, Davies H, Sims LP, Levy SE, Dean J (2007) Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev Biol 7:67. https://doi.org/10.1186/1471-213X-7-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang Z, Xu X, Li JL, Palmer C, Maric D, Dean J (2019) Sertoli cell-only phenotype and scRNA-seq define PRAMEF12 as a factor essential for spermatogenesis in mice. Nat Commun 10:5196. https://doi.org/10.1038/s41467-019-13193-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Song K, Yang X, An G, Xia X, Zhao J, Xu X, Wan C, Liu T, Zheng Y, Ren S, Wang M, Chang G, Cronin SJF, Penninger JM, Jing T, Ou X, Rao S, Liu Z, Zhao XY (2022) Targeting APLN/APJ restores blood-testis barrier and improves spermatogenesis in murine and human diabetic models. Nat Commun 13:7335. https://doi.org/10.1038/s41467-022-34990-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pierre T, Selhane F, Zareski E, Garcia C, Fizazi K, Loriot Y, Patrikidou A, Naoun N, Bernard-Tessier A, Baumert H, Lebacle C, Blanchard P, Rocher L, Balleyguier C (2022) The role of CT in the staging and follow-up of testicular tumors: baseline, recurrence and pitfalls. Cancers. https://doi.org/10.3390/cancers14163965

    Article  PubMed  PubMed Central  Google Scholar 

  105. Moch H, Amin MB, Berney DM, Compérat EM, Gill AJ, Hartmann A, Menon S, Raspollini MR, Rubin MA, Srigley JR, Hoon Tan P, Tickoo SK, Tsuzuki T, Turajlic S, Cree I, Netto GJ (2022) The 2022 World Health Organization classification of tumours of the Ur inary system and male genital organs-part A: renal, penile, and testic ular tumours. Eur Urol. https://doi.org/10.1016/j.eururo.2022.06.016

    Article  PubMed  Google Scholar 

  106. Znaor A, Skakkebaek N, Rajpert-De Meyts E, Kuliš T, Laversanne M, Gurney J, Sarfati D, McGlynn K, Bray F (2022) Global patterns in testicular cancer incidence and mortality in 2020. Int J Cancer 151:692–698. https://doi.org/10.1002/ijc.33999

    Article  CAS  PubMed  Google Scholar 

  107. Webster NJ, Maywald RL, Benton SM, Dawson EP, Murillo OD, LaPlante EL, Milosavljevic A, Lanza DG, Heaney JD (2021) Testicular germ cell tumors arise in the absence of sex-specific differentiation. Development. https://doi.org/10.1242/dev.197111

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mo L, Yu Z, Lv Y, Cheng J, Yan H, Lu W, Su C, Ling Q, Mo Z (2022) Single-cell RNA sequencing of metastatic testicular seminoma reveals the cellular and molecular characteristics of metastatic cell lineage. Front Oncol. https://doi.org/10.3389/fonc.2022.871489

    Article  PubMed  PubMed Central  Google Scholar 

  109. Xu X, Liu Z, Li Y, Fan L, Wang S, Guo J, Luo Y, Bo H (2022) Single nuclear RNA sequencing highlights intra-tumoral heterogeneity and tumor microenvironment complexity in testicular embryonic rhabdomyosarcoma. J Inflamm Res 15:493–507. https://doi.org/10.2147/JIR.S343068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A (2020) Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med 52:1419–1427. https://doi.org/10.1038/s12276-020-00499-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33:285–289. https://doi.org/10.1038/nbt.3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, Goolam M, Saurat N, Coupland P, Shirley LM, Smith M, Van der Aa N, Banerjee R, Ellis PD, Quail MA, Swerdlow HP, Zernicka-Goetz M, Livesey FJ, Ponting CP, Voet T (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12:519–522. https://doi.org/10.1038/nmeth.3370

    Article  CAS  PubMed  Google Scholar 

  113. Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, Jeon HJ, Moon HS, Yoo CE, Chung W, Eum HH, Kim S, Kim HK, Lee JE, Ahn MJ, Lee HO, Park D, Park WY (2018) SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res 28:75–87. https://doi.org/10.1101/gr.223263.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rodriguez-Meira A, Buck G, Clark SA, Povinelli BJ, Alcolea V, Louka E, McGowan S, Hamblin A, Sousos N, Barkas N, Giustacchini A, Psaila B, Jacobsen SEW, Thongjuea S, Mead AJ (2019) Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing. Mol Cell. https://doi.org/10.1016/j.molcel.2019.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bell AD, Mello CJ, Nemesh J, Brumbaugh SA, Wysoker A, McCarroll SA (2020) Insights into variation in meiosis from 31,228 human sperm genomes. Nature 583:259–264. https://doi.org/10.1038/s41586-020-2347-0

    Article  CAS  PubMed  Google Scholar 

  116. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood S, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13:229–232. https://doi.org/10.1038/nmeth.3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen S, Lake BB, Zhang K (2019) High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol 37:1452–1457. https://doi.org/10.1038/s41587-019-0290-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhu C, Yu M, Huang H, Juric I, Abnousi A, Hu R, Lucero J, Behrens MM, Hu M, Ren B (2019) An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol 26:1063–1070. https://doi.org/10.1038/s41594-019-0323-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu L, Liu C, Quintero A, Wu L, Yuan Y, Wang M, Cheng M, Leng L, Xu L, Dong G, Li R, Liu Y, Wei X, Xu J, Chen X, Lu H, Chen D, Wang Q, Zhou Q, Lin X, Li G, Liu S, Wang Q, Wang H, Fink JL, Gao Z, Liu X, Hou Y, Zhu S, Yang H, Ye Y, Lin G, Chen F, Herrmann C, Eils R, Shang Z, Xu X (2019) Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat Commun 10:470. https://doi.org/10.1038/s41467-018-08205-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868. https://doi.org/10.1038/nmeth.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK, Sadekova S, Klappenbach JA (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939. https://doi.org/10.1038/nbt.3973

    Article  CAS  PubMed  Google Scholar 

  122. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg A, Ponten F, Costea PI, Sahlen P, Mulder J, Bergmann O, Lundeberg J, Frisen J (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82. https://doi.org/10.1126/science.aaf2403

    Article  CAS  PubMed  Google Scholar 

  123. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ (2019) Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–1467. https://doi.org/10.1126/science.aaw1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen H, Murray E, Sinha A, Laumas A, Li J, Lesman D, Nie X, Hotaling J, Guo J, Cairns BR, Macosko EZ, Cheng CY, Chen F (2021) Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109915

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wu H, Kirita Y, Donnelly EL, Humphreys BD (2019) Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J Am Soc Nephrol 30:23–32. https://doi.org/10.1681/ASN.2018090912

    Article  CAS  PubMed  Google Scholar 

  126. Slyper M, Porter CBM, Ashenberg O, Waldman J, Drokhlyansky E, Wakiro I, Smillie C, Smith-Rosario G, Wu J, Dionne D, Vigneau S, Jane-Valbuena J, Tickle TL, Napolitano S, Su MJ, Patel AG, Karlstrom A, Gritsch S, Nomura M, Waghray A, Gohil SH, Tsankov AM, Jerby-Arnon L, Cohen O, Klughammer J, Rosen Y, Gould J, Nguyen L, Hofree M, Tramontozzi PJ, Li B, Wu CJ, Izar B, Haq R, Hodi FS, Yoon CH, Hata AN, Baker SJ, Suva ML, Bueno R, Stover EH, Clay MR, Dyer MA, Collins NB, Matulonis UA, Wagle N, Johnson BE, Rotem A, Rozenblatt-Rosen O, Regev A (2020) A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med 26:792–802. https://doi.org/10.1038/s41591-020-0844-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20:273–282. https://doi.org/10.1038/s41576-018-0088-9

    Article  CAS  PubMed  Google Scholar 

  128. Hedlund E, Deng Q (2018) Single-cell RNA sequencing: Technical advancements and biological applications. Mol Aspects Med 59:36–46. https://doi.org/10.1016/j.mam.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  129. Lahnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, Stamatakis A, Attolini CS, Aparicio S, Baaijens J, Balvert M, Barbanson B, Cappuccio A, Corleone G, Dutilh BE, Florescu M, Guryev V, Holmer R, Jahn K, Lobo TJ, Keizer EM, Khatri I, Kielbasa SM, Korbel JO, Kozlov AM, Kuo TH, Lelieveldt BPF, Mandoiu II, Marioni JC, Marschall T, Molder F, Niknejad A, Raczkowski L, Reinders M, Ridder J, Saliba AE, Somarakis A, Stegle O, Theis FJ, Yang H, Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, Schonhuth A (2020) Eleven grand challenges in single-cell data science. Genome Biol 21:31. https://doi.org/10.1186/s13059-020-1926-6

    Article  PubMed  PubMed Central  Google Scholar 

  130. Imoto Y, Nakamura T, Escolar EG, Yoshiwaki M, Kojima Y, Yabuta Y, Katou Y, Yamamoto T, Hiraoka Y, Saitou M (2022) Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis. Life Sci Alliance. https://doi.org/10.26508/lsa.202201591

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dal Molin A, Di Camillo B (2019) How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives. Brief Bioinform 20:1384–1394. https://doi.org/10.1093/bib/bby007

    Article  CAS  Google Scholar 

  132. Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M, Tao Y, Zheng Y, Fu J, Liu W, Kellis M, Clark A (2019) Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep. https://doi.org/10.1016/j.celrep.2019.11.083

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L, Hsieh TC, Rabah R, Hammoud SS, Vicini E, Wilkinson MF (2019) The neonatal and adult human testis defined at the single-cell level. Cell Rep. https://doi.org/10.1016/j.celrep.2019.01.045

    Article  PubMed  PubMed Central  Google Scholar 

  134. Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E, DonorConnect PK, Hotaling JM, Stukenborg JB, Clark AT, Cairns BR (2021) Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28:764. https://doi.org/10.1016/j.stem.2020.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han B, Yan Z, Yu S, Ge W, Li Y, Wang Y, Yang B, Shen W, Jiang H, Sun Z (2021) Infertility network and hub genes for nonobstructive azoospermia utilizing integrative analysis. Aging (Albany NY) 13:7052–7066. https://doi.org/10.18632/aging.202559

    Article  CAS  PubMed  Google Scholar 

  136. Zhang N, Wang Y, Chen Z, Ren J, Rehman A, Ahmad DW, Long D, Hou J, Zhou Y, Yang L, Ni Y, Li Y, Du C, Yu Y, Liao M (2022) Single-cell transcriptome analysis of Bisphenol A exposure reveals the key roles of the testicular microenvironment in male reproduction. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2021.112449

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zheng W, Zhang S, Jiang S, Huang Z, Chen X, Guo H, Li M, Zheng S (2021) Evaluation of immune status in testis and macrophage polarization associated with testicular damage in patients with non-obstructive azoospermia. Am J Reprod Immunol 86:e13481. https://doi.org/10.1111/aji.13481

    Article  CAS  PubMed  Google Scholar 

  138. He H, Yu F, Shen W, Chen K, Zhang L, Lou S, Zhang Q, Chen S, Yuan X, Jia X, Zhou Y (2021) The novel key genes of non-obstructive azoospermia affect spermatogenesis: transcriptomic analysis based on RNA-Seq and scRNA-Seq data. Front Genet. https://doi.org/10.3389/fgene.2021.608629

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tang XJ, Xiao QH, Wang XL, He Y, Tian YN, Xia BT, Guo Y, Huang JL, Duan P, Tan Y (2022) Single-cell transcriptomics-based study of transcriptional regulatory features in the non-obstructive azoospermia testis. Front Genet 13:875762. https://doi.org/10.3389/fgene.2022.875762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu X, Chen Y, Tang W, Zhang L, Chen W, Yan Z, Yuan P, Yang M, Kong S, Yan L, Qiao J (2020) Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci China Life Sci 63:1006–1015. https://doi.org/10.1007/s11427-020-1705-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhou R, Lv X, Chen T, Chen Q, Tian H, Yang C, Guo W, Liu C (2021) Construction and external validation of a 5-gene random forest model to diagnose non-obstructive azoospermia based on the single-cell RNA sequencing of testicular tissue. Aging (Albany NY) 13:24219–24235. https://doi.org/10.18632/aging.203675

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China(32270912), Natural Science Foundation of Hunan Province (2021JJ41091) and College Students Innovation and Entrepreneurship Training Program of Central South University(XCX2022140).

Author information

Authors and Affiliations

Authors

Contributions

Hanbo Jia, Wei Wang, Zhaowen Zhou, Zhiyi Chen, and Zijun Lan drafted the manuscript. Liqing Fan and Ho Bo edited the manuscript. Hanbo Jia prepared Figs. 12. The final manuscript has been read and approved for publication by all authors.

Corresponding authors

Correspondence to Hao Bo or Liqing Fan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Ethics approval is not applicable to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Wang, W., Zhou, Z. et al. Single-cell RNA sequencing technology in human spermatogenesis: Progresses and perspectives. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04840-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04840-x

Keywords

Navigation