Skip to main content

Advertisement

Log in

The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) has a very high mortality rate globally. Despite ongoing efforts, its prognosis has not improved significantly over the last two decades. Thus, further approaches for optimizing treatment are required. Various biological processes oscillate in a circadian rhythm and are regulated by an endogenous clock. The machinery controlling the circadian cycle is tightly coupled with the cell cycle and can interact with tumor suppressor genes/oncogenes; and can therefore potentially influence cancer progression. Understanding the detailed interactions may lead to the discovery of prognostic and diagnostic biomarkers and new potential targets for treatment. Here, we explain how the circadian system relates to the cell cycle, cancer, and tumor suppressor genes/oncogenes. Furthermore, we propose that circadian clock genes may be potential biomarkers for some cancers and review the current advances in the treatment of PC by targeting the circadian clock. Despite efforts to diagnose pancreatic cancer early, it still remains a cancer with poor prognosis and high mortality rates. While studies have shown the role of molecular clock disruption in tumor initiation, development, and therapy resistance, the role of circadian genes in pancreatic cancer pathogenesis is not yet fully understood and further studies are required to better understand the potential of circadian genes as biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R et al (2020) Good or not good: role of miR-18a in cancer biology. Rep Pract Oncol Radiother 25(5):808–819

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cai J, Chen H, Lu M, Zhang Y, Lu B, You L et al (2021) Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett 520:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Can Res 74(11):2913–2921

    Article  CAS  Google Scholar 

  4. Chung V, Sun V, Ruel N, Smith TJ, Ferrell BR (2022) Improving palliative care and quality of life in pancreatic cancer patients. J Palliat Med 25(5):720–727

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tavano F, Pazienza V, Fontana A, Burbaci FP, Panebianco C, Saracino C et al (2015) SIRT1 and circadian gene expression in pancreatic ductal adenocarcinoma: effect of starvation. Chronobiol Int 32(4):497–512

    Article  CAS  PubMed  Google Scholar 

  6. Relles D, Sendecki J, Chipitsyna G, Hyslop T, Yeo CJ, Arafat HA (2013) Circadian gene expression and clinicopathologic correlates in pancreatic cancer. J Gastrointest Surg 17(3):443–450

    Article  PubMed  Google Scholar 

  7. Hu J-X, Zhao C-F, Chen W-B, Liu Q-C, Li Q-W, Lin Y-Y et al (2021) Pancreatic cancer: a review of epidemiology, trend, and risk factors. World J Gastroenterol 27(27):4298

    Article  PubMed  PubMed Central  Google Scholar 

  8. Daoud AZ, Mulholland EJ, Cole G, McCarthy HO (2019) MicroRNAs in pancreatic cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 19(1):1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. García-Costela M, Escudero-Feliú J, Puentes-Pardo JD, San Juán SM, Morales-Santana S, Ríos-Arrabal S et al (2020) Circadian genes as therapeutic targets in pancreatic cancer. Front Endocrinol 11:638

    Article  Google Scholar 

  10. Crnko S, Du Pré BC, Sluijter JP, Van Laake LW (2019) Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 16(7):437–447

    Article  PubMed  Google Scholar 

  11. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  12. Yagita K, Horie K, Koinuma S, Nakamura W, Yamanaka I, Urasaki A et al (2010) Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc Natl Acad Sci 107(8):3846–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dierickx P, Vermunt MW, Muraro MJ, Creyghton MP, Doevendans PA, van Oudenaarden A et al (2017) Circadian networks in human embryonic stem cell-derived cardiomyocytes. EMBO Rep 18(7):1199–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493

    Article  CAS  PubMed  Google Scholar 

  15. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM et al (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289(5488):2344–2347

    Article  CAS  PubMed  Google Scholar 

  16. Hernández-Rosas F, López-Rosas CA, Saavedra-Vélez MV (2020) Disruption of the molecular circadian clock and cancer: an epigenetic link. Biochem Genet 58(1):189–209

    Article  PubMed  Google Scholar 

  17. Li Y, Basti A, Yalçin M, Relógio A (2020) Circadian dysregulation of the TGFβ/SMAD4 pathway modulates metastatic properties and cell fate decisions in pancreatic cancer cells. Iscience 23(10):101551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garrido ALF, de Sousa DA, Santana PT, Rodrigues GH, Pellegrino P, Nogueira LFR et al (2021) Eating habits, sleep, and a proxy for circadian disruption are correlated with dyslipidemia in overweight night workers. Nutrition 83:111084

    Article  CAS  PubMed  Google Scholar 

  19. Morris CJ, Yang JN, Scheer FA (2012) The impact of the circadian timing system on cardiovascular and metabolic function. Prog Brain Res 199:337–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-Lopez JC, Morell M (2019) An overview of the polymorphisms of circadian genes associated with endocrine cancer. Front Endocrinol 10:104

    Article  Google Scholar 

  21. Cash E, Sephton S, Chagpar A, Spiegel D, Rebholz W, Zimmaro L et al (2015) Circadian disruption and biomarkers of tumor progression in breast cancer patients awaiting surgery. Brain Behav Immun 48:102–114

    Article  CAS  PubMed  Google Scholar 

  22. Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang L et al (2018) Rotating night shift work and colorectal cancer risk in the nurses’ health studies. Int J Cancer 143(11):2709–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kogevinas M, Espinosa A, Castelló A, Gómez-Acebo I, Guevara M, Martin V et al (2018) Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain study). Int J Cancer 143(10):2380–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Innominato PF, Giacchetti S, Bjarnason GA, Focan C, Garufi C, Coudert B et al (2012) Prediction of overall survival through circadian rest-activity monitoring during chemotherapy for metastatic colorectal cancer. Int J Cancer 131(11):2684–2692

    Article  CAS  PubMed  Google Scholar 

  25. Yang MY, Chang JG, Lin PM, Tang KP, Chen YH, Lin HYH et al (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci 97(12):1298–1307

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Wood PA, Oh E-Y, Du-Quiton J, Ansell CM, Hrushesky WJ (2009) Down regulation of circadian clock gene period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat 117(2):423–431

    Article  PubMed  Google Scholar 

  27. Tokunaga H, Takebayashi Y, Utsunomiya H, Akahira J-I, Higashimoto M, Mashiko M et al (2008) Clinicopathological significance of circadian rhythm-related gene expression levels in patients with epithelial ovarian cancer. Acta Obstet Gynecol Scand 87(10):1060–1070

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Y, Stevens RG, Hoffman AE, Fitzgerald LM, Kwon EM, Ostrander EA et al (2009) Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study circadian genes and prostate cancer. Can Res 69(24):9315–9322

    Article  CAS  Google Scholar 

  29. Pogue-Geile KL, Lyons-Weiler J, Whitcomb DC (2006) Molecular overlap of fly circadian rhythms and human pancreatic cancer. Cancer Lett 243(1):55–57

    Article  CAS  PubMed  Google Scholar 

  30. Udoh US, Valcin JA, Gamble KL, Bailey SM (2015) The molecular circadian clock and alcohol-induced liver injury. Biomolecules 5(4):2504–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113:103–112

    Article  PubMed  Google Scholar 

  32. Kato Y, Kawamoto T, Fujimoto K, Noshiro M (2014) DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli. Curr Top Dev Biol 110:339–372

    Article  PubMed  Google Scholar 

  33. Goriki A, Hatanaka F, Myung J, Kim JK, Yoritaka T, Tanoue S et al (2014) A novel protein, CHRONO, functions as a core component of the mammalian circadian clock. PLoS Biol 12(4):e1001839

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Xu T, Zhang Y, Qin X (2017) Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Cell Signal 31:58–65

    Article  CAS  PubMed  Google Scholar 

  35. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109(3):307–320

    Article  CAS  PubMed  Google Scholar 

  36. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci 111(45):16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farshadi E, van Der Horst GT, Chaves I (2020) Molecular links between the circadian clock and the cell cycle. J Mol Biol 432(12):3515–3524

    Article  CAS  PubMed  Google Scholar 

  38. Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bieler J, Cannavo R, Gustafson K, Gobet C, Gatfield D, Naef F (2014) Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol 10(7):739

    Article  PubMed  PubMed Central  Google Scholar 

  40. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259

    Article  CAS  PubMed  Google Scholar 

  41. Kowalska E, Ripperger JA, Hoegger DC, Bruegger P, Buch T, Birchler T et al (2013) NONO couples the circadian clock to the cell cycle. Proc Natl Acad Sci 110(5):1592–1599

    Article  CAS  PubMed  Google Scholar 

  42. Laranjeiro R, Tamai TK, Peyric E, Krusche P, Ott S, Whitmore D (2013) Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing. Proc Natl Acad Sci 110(17):6835–6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farshadi E, Yan J, Leclere P, Goldbeter A, Chaves I, van der Horst GT (2019) The positive circadian regulators CLOCK and BMAL1 control G2/M cell cycle transition through cyclin B1. Cell Cycle 18(1):16–33

    Article  CAS  PubMed  Google Scholar 

  44. Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GT (2008) Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol 18(4):286–291

    Article  CAS  PubMed  Google Scholar 

  45. Papp SJ, Huber A-L, Jordan SD, Kriebs A, Nguyen M, Moresco JJ et al (2015) DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife 4:e04883

    Article  PubMed  PubMed Central  Google Scholar 

  46. Unsal-Kaçmaz K, Mullen TE, Kaufmann WK, Sancar A (2005) Coupling of human circadian and cell cycles by the timeless protein. Mol Cell Biol 25(8):3109–3116

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22(3):375–382

    Article  CAS  PubMed  Google Scholar 

  48. Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice (1432–0428 (Electronic)). Diabetologia 54(1):120–124

    Article  CAS  PubMed  Google Scholar 

  49. Chan K, Wong FS, Pearson JA (2022) Circadian rhythms and pancreas physiology: a review. Front Endocrinol 13:920261

    Article  Google Scholar 

  50. Vieira E, Burris TP, Quesada I (2014) Clock genes, pancreatic function, and diabetes. Trends Mol Med 20(12):685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sato T, Sassone-Corsi P (2022) Nutrition, metabolism, and epigenetics: pathways of circadian reprogramming. EMBO Rep 23(5):e52412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao L, Hutchison AT, Heilbronn LK (2021) Carbohydrate intake and circadian synchronicity in the regulation of glucose homeostasis. Curr Opin Clin Nutr Metab Care 24(4):342–348

    Article  CAS  PubMed  Google Scholar 

  53. Zhang C, Tait C, Minacapelli CD, Bhurwal A, Gupta K, Amin R et al (2022) The role of race, sex, and age in circadian disruption and metabolic disorders. Gastro Hep Advances 1(3):471–479

    Article  Google Scholar 

  54. Eastman CI, Tomaka VA, Crowley SJ (2016) Circadian rhythms of European and African-Americans after a large delay of sleep as in jet lag and night work. Sci Rep 6(1):1–11

    Article  Google Scholar 

  55. Li J, Somers VK, Lopez-Jimenez F, Di J, Covassin N (2021) Demographic characteristics associated with circadian rest-activity rhythm patterns: a cross-sectional study. Int J Behav Nutr Phys Act 18(1):107

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ijaz S, Verbeek J, Seidler A, Lindbohm M-L, Ojajärvi A, Orsini N et al (2013) Night-shift work and breast cancer—a systematic review and meta-analysis. Scand J Work Environ Health 39:431–447

    Article  PubMed  Google Scholar 

  57. Filipski E, Delaunay F, King VM, Wu M-W, Claustrat B, Gréchez-Cassiau A et al (2004) Effects of chronic jet lag on tumor progression in mice. Can Res 64(21):7879–7885

    Article  CAS  Google Scholar 

  58. Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A et al (2016) Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab 24(2):324–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sancar A, Van Gelder RN (2021) Clocks, cancer, and chronochemotherapy. Science. https://doi.org/10.1126/science.abb0738

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cash E, Sephton S, Woolley C, Elbehi AM, Anu RI, Ekine-Afolabi B et al (2021) The role of the circadian clock in cancer hallmark acquisition and immune-based cancer therapeutics. J Exp Clin Cancer Res 40(1):1–14

    Article  Google Scholar 

  61. Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu C-J, Park PK et al (2018) The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst 6(3):314–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pogue-Geile KL, Mackey JA, George RD, Wood PG, Lee KK, Moser AJ et al (2004) A new microarray, enriched in pancreas and pancreatic cancer cDNAs to identify genes relevant to pancreatic cancer. Cancer Genomics Proteomics 1(5–6):371–386

    CAS  PubMed  Google Scholar 

  63. Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period 2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50

    Article  CAS  PubMed  Google Scholar 

  64. Wood PA, Yang X, Taber A, Oh E-Y, Ansell C, Ayers SE et al (2008) Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol Cancer Res 6(11):1786–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee S, Donehower LA, Herron AJ, Moore DD, Fu L (2010) Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS ONE 5(6):e10995

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oda A, Katayose Y, Yabuuchi S, Yamamoto K, Mizuma M, Shirasou S et al (2009) Clock gene mouse period2 overexpression inhibits growth of human pancreatic cancer cells and has synergistic effect with cisplatin. Anticancer Res 29(4):1201–1209

    CAS  PubMed  Google Scholar 

  67. Zhou L, Yu Y, Sun S, Zhang T, Wang M (2018) Cry 1 regulates the clock gene network and promotes proliferation and migration via the Akt/P53/P21 pathway in human osteosarcoma cells. J Cancer 9(14):2480

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cotterchio M, Lowcock E, Bider-Canfield Z, Lemire M, Greenwood C, Gallinger S et al (2015) Association between variants in atopy-related immunologic candidate genes and pancreatic cancer risk. PLoS ONE 10(5):e0125273

    Article  PubMed  PubMed Central  Google Scholar 

  69. Reszka E, Zienolddiny S (2018) Epigenetic basis of circadian rhythm disruption in cancer. Cancer Epigenet Precision Med. https://doi.org/10.1007/978-1-4939-8751-1_10

    Article  Google Scholar 

  70. Bönsch D, Hothorn T, Krieglstein C, Koch M, Nehmer C, Lenz B et al (2007) Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int 24(2):315–326

    Article  PubMed  Google Scholar 

  71. Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z et al (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS ONE 10(2):e0118101

    Article  PubMed  PubMed Central  Google Scholar 

  72. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497–508

    Article  CAS  PubMed  Google Scholar 

  73. Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148(1–2):24–28

    Article  CAS  PubMed  Google Scholar 

  74. Reszka E, Zienolddiny S (2018) Epigenetic basis of circadian rhythm disruption in cancer. In: Dumitrescu RG, Verma M (eds) Cancer epigenetics for precision medicine: methods and protocols. Springer, New York, pp 173–201

    Chapter  Google Scholar 

  75. Mao Y, Fu A, Hoffman AE, Jacobs DI, Jin M, Chen K et al (2015) The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications. Tumor Biology 36:3533–3539

    Article  CAS  PubMed  Google Scholar 

  76. Alexander M, Burch J, Steck S, Chen C-F, Hurley T, Cavicchia P et al (2017) Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 32:183–192

    Article  CAS  PubMed  Google Scholar 

  77. Tomita T, Kurita R, Onishi Y (2017) Epigenetic regulation of the circadian clock: role of 5-aza-2′-deoxycytidine. Biosci Rep. https://doi.org/10.1042/BSR20170053

  78. Hsu M-C, Huang C-C, Choo K-B, Huang C-J (2007) Uncoupling of promoter methylation and expression of Period1 in cervical cancer cells. Biochem Biophys Res Commun 360(1):257–262

    Article  CAS  PubMed  Google Scholar 

  79. Salavaty A, Mohammadi N, Shahmoradi M, Naderi SM (2017) Bioinformatic analysis of circadian expression of oncogenes and tumor suppressor genes. Bioinform Biol Insights 11:1177932217746991

    Article  PubMed  PubMed Central  Google Scholar 

  80. Burchett JB, Knudsen-Clark AM, Altman BJ (2021) MYC Ran up the clock: the complex interplay between MYC and the molecular circadian clock in cancer. Int J Mol Sci 22(14):7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122(5):803–815

    Article  CAS  PubMed  Google Scholar 

  82. Miki T, Matsumoto T, Zhao Z, Lee CC (2013) p53 regulates Period2 expression and the circadian clock. Nat Commun 4(1):1–11

    Article  Google Scholar 

  83. Zou X, Kim DW, Gotoh T, Liu J, Kim JK, Finkielstein CV (2020) A systems biology approach identifies hidden regulatory connections between the circadian and cell-cycle checkpoints. Front Physiol 11:327

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gotoh T, Kim JK, Liu J, Vila-Caballer M, Stauffer PE, Tyson JJ et al (2016) Model-driven experimental approach reveals the complex regulatory distribution of p53 by the circadian factor Period 2. Proc Natl Acad Sci 113(47):13516–13521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Filipski E, Li XM, Lévi F (2006) Disruption of circadian coordination and malignant growth. Cancer Causes Control 17(4):509–514

    Article  PubMed  Google Scholar 

  86. Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL (2009) A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS ONE 4(3):e4798

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jiang W, Zhao S, Jiang X, Zhang E, Hu G, Hu B et al (2016) The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett 371(2):314–325

    Article  CAS  PubMed  Google Scholar 

  88. Basti A, Fior R, Yalҫin M, Póvoa V, Astaburuaga R, Li Y et al (2020) The Core-Clock gene NR1D1 impacts cell motility in vitro and invasiveness in a zebrafish xenograft colon cancer model. Cancers 12(4):853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee Y, Lahens NF, Zhang S, Bedont J, Field JM, Sehgal A (2019) G1/S cell cycle regulators mediate effects of circadian dysregulation on tumor growth and provide targets for timed anticancer treatment. PLoS Biol 17(4):e3000228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu Y, Sato F, Yamada T, Bhawal UK, Kawamoto T, Fujimoto K et al (2012) The BHLH transcription factor DEC1 plays an important role in the epithelial-mesenchymal transition of pancreatic cancer. Int J Oncol 41(4):1337–1346

    Article  CAS  PubMed  Google Scholar 

  91. Wang W, Reiser-Erkan C, Michalski CW, Raggi MC, Quan L, Yupei Z et al (2010) Hypoxia inducible BHLHB2 is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 401(3):422–428

    Article  CAS  PubMed  Google Scholar 

  92. Li W, Liu L, Liu D, Jin S, Yang Y, Tang W et al (2016) Decreased circadian component Bmal1 predicts tumor progression and poor prognosis in human pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 472(1):156–162

    Article  CAS  PubMed  Google Scholar 

  93. Zeng ZL, Luo HY, Yang J, Wu WJ, Chen DL, Huang P et al (2014) Overexpression of the circadian clock gene Bmal1 increases sensitivity to oxaliplatin in colorectal cancer. Clin Cancer Res 20(4):1042–1052

    Article  CAS  PubMed  Google Scholar 

  94. Zhang L-L, He Q-K, Lv Y-N, Zhang Z-J, Xiang Y-K (2021) Expression pattern and prognostic value of circadian clock genes in pancreatic adenocarcinoma. Chronobiol Int 38(5):681–693

    Article  CAS  PubMed  Google Scholar 

  95. Xu Z, Wang Z, Jia X, Wang L, Chen Z, Wang S et al (2016) MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett 372(1):118–127

    Article  CAS  PubMed  Google Scholar 

  96. Sato F, Nagata C, Liu Y, Suzuki T, Kondo J, Morohashi S et al (2009) PERIOD1 is an anti-apoptotic factor in human pancreatic and hepatic cancer cells. J Biochem 146(6):833–838

    Article  CAS  PubMed  Google Scholar 

  97. Qiu M-J, Liu L-P, Jin S, Fang X-F, He X-X, Xiong Z-F et al (2019) Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int 36(7):906–918

    Article  CAS  PubMed  Google Scholar 

  98. Chang WH, Lai AG (2019) Timing gone awry: distinct tumour suppressive and oncogenic roles of the circadian clock and crosstalk with hypoxia signalling in diverse malignancies. J Transl Med 17(1):1–16

    Article  CAS  Google Scholar 

  99. Shen GQ, Aleassa EM, Walsh RM, Morris-Stiff G (2019) Next-generation sequencing in pancreatic cancer. Pancreas 48(6):739–748

    Article  PubMed  Google Scholar 

  100. Miller AL, Garcia PL, Yoon KJ (2020) Developing effective combination therapy for pancreatic cancer: an overview. Pharmacol Res 155:104740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y et al (2018) The MiR-135b–BMAL1–YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis 9(2):1–15

    Article  Google Scholar 

  102. Li S, Hong H, Lv H, Wu G, Wang Z (2016) SIRT 1 overexpression is associated with metastasis of pancreatic ductal adenocarcinoma (PDAC) and promotes migration and growth of PDAC cells. Med Sci Monit 22:1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu J, Zhu W, Xu W, Yao W, Zhang B, Xu Y et al (2013) Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin. Curr Mol Med 13(3):387–400

    CAS  PubMed  Google Scholar 

  104. McGlynn LM, McCluney S, Jamieson NB, Thomson J, MacDonald AI, Oien K et al (2015) SIRT3 & SIRT7: potential novel biomarkers for determining outcome in pancreatic cancer patients. PLoS ONE 10(6):e0131344

    Article  PubMed  PubMed Central  Google Scholar 

  105. Stenzinger A, Endris V, Klauschen F, Sinn B, Lorenz K, Warth A et al (2013) High SIRT1 expression is a negative prognosticator in pancreatic ductal adenocarcinoma. BMC Cancer 13(1):1–12

    Article  Google Scholar 

  106. Gong D-J, Zhang J-M, Yu M, Zhuang B, Guo Q-Q (2013) Inhibition of SIRT1 combined with gemcitabine therapy for pancreatic carcinoma. Clin Interv Aging 8:889–897

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang JG, Hong DF, Zhang CW, Sun XD, Wang ZF, Shi Y et al (2014) Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress. Cancer Sci 105(4):445–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oon CE, Strell C, Yeong KY, Östman A, Prakash J (2015) SIRT1 inhibition in pancreatic cancer models: contrasting effects in vitro and in vivo. Eur J Pharmacol 757:59–67

    Article  CAS  PubMed  Google Scholar 

  109. Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF et al (2010) Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets 10(3):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lanzino M, Maris P, Sirianni R, Barone I, Casaburi I, Chimento A et al (2013) DAX-1, as an androgen-target gene, inhibits aromatase expression: a novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell Death Dis 4(7):e724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H (2019) Protein kinase CK2, a potential therapeutic target in carcinoma management. Asian Pac J Cancer Prev 20(1):23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Behrend L, Milne DM, Stöter M, Deppert W, Campbell LE, Meek DW et al (2000) IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects. Oncogene 19(47):5303–5313

    Article  CAS  PubMed  Google Scholar 

  113. Battaglin F, Chan P, Pan Y, Soni S, Qu M, Spiller ER et al (2021) Clocking cancer: the circadian clock as a target in cancer therapy. Oncogene 40(18):3187–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dong Z, Zhang G, Qu M, Gimple RC, Wu Q, Qiu Z et al (2019) Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov 9(11):1556–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sulli G, Rommel A, Wang X, Kolar MJ, Puca F, Saghatelian A et al (2018) Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553(7688):351–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dong Z, Zhang G, Qu M, Gimple RC, Wu Q, Qiu Z et al (2019) Targeting glioblastoma stem cells through disruption of the circadian clock targeting the circadian clock in glioblastoma stem cells. Cancer Discov 9(11):1556–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci 104(9):3342–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Matsunaga N, Kohno Y, Kakimoto K, Hayashi A, Koyanagi S, Ohdo S (2011) Influence of CLOCK on cytotoxicity induced by diethylnitrosamine in mouse primary hepatocytes. Toxicology 280(3):144–151

    Article  CAS  PubMed  Google Scholar 

  119. Yalçin M, El-Athman R, Ouk K, Priller J, Relógio A (2020) Analysis of the circadian regulation of cancer hallmarks by a cross-platform study of colorectal cancer time-series data reveals an association with genes involved in Huntington’s disease. Cancers 12(4):963

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gréchez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F (2008) The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem 283(8):4535–4542

    Article  PubMed  Google Scholar 

  121. Wang J, Li S, Li X, Li B, Li Y, Xia K et al (2019) Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int 19(1):1–12

    Google Scholar 

  122. Liu Z, Selby CP, Yang Y, Lindsey-Boltz LA, Cao X, Eynullazada K et al (2020) Circadian regulation of c-MYC in mice. Proc Natl Acad Sci 117(35):21609–21617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guo F, Tang Q, Chen G, Sun J, Zhu J, Jia Y et al (2020) Aberrant expression and subcellular localization of PER2 promote the progression of Oral squamous cell carcinoma. BioMed Res Int 2020:1–10

    Google Scholar 

  124. Wang Z, Li L, Wang Y (2016) Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in nude mice xenograft models of ovarian cancer. Mol Med Rep 13(6):4561–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mteyrek A, Filipski E, Guettier C, Okyar A, Lévi F (2016) Clock gene Per2 as a controller of liver carcinogenesis. Oncotarget 7(52):85832

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lee CC (2006) Tumor suppression by the mammalian Period genes. Cancer Causes Control 17(4):525–530

    Article  PubMed  Google Scholar 

  127. Hoffman AE, Zheng T, Ba Y, Stevens RG, Yi C-H, Leaderer D et al (2010) Phenotypic effects of the circadian gene Cryptochrome 2 on cancer-related pathways. BMC Cancer 10(1):1–7

    Article  Google Scholar 

  128. Zheng X, Wu K, Liao S, Pan Y, Sun Y, Chen X et al (2018) MicroRNA-transcription factor network analysis reveals miRNAs cooperatively suppress RORA in oral squamous cell carcinoma. Oncogenesis 7(10):1–18

    Article  Google Scholar 

  129. Harding HP, Lazar MA (1995) The monomer-binding orphan receptor Rev-Erb represses transcription as a dimer on a novel direct repeat. Mol Cell Biol 15(9):4791–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by a Grant from Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

GP, AMA, MA, and RP performed the data collection. The draft was prepared by GP, DK, HG, HF, and MN. The study was designed and supervised by GP, SMH, GAF, MK, and AA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amir Avan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourali, G., Ahmadzade, A.M., Arastonejad, M. et al. The circadian clock as a potential biomarker and therapeutic target in pancreatic cancer. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04790-4

Keywords

Navigation