Skip to main content
Log in

DKK3 promotes oxidative stress injury and fibrosis in HK-2 cells by activating NOX4 via β-catenin/TCF4 signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress and fibrosis may accelerate the progression of chronic kidney disease (CKD). DKK3 is related to regulating renal fibrosis and CKD. However, the molecular mechanism of DKK3 in regulating oxidative stress and fibrosis during CKD development has not been clarified, which deserves to be investigated. Human proximal tubule epithelial cells (HK-2 cells) were treated with H2O2 to establish a cell model of renal fibrosis. The mRNA and protein expressions were analyzed using qRT-PCR and western blot, respectively. Cell viability and apoptosis were evaluated using MTT assay and flow cytometry, respectively. ROS production was estimated using DCFH-DA. The interactions among TCF4, β-catenin and NOX4 were validated using luciferase activity assay, ChIP and Co-IP. Herein, our results revealed that DKK3 was highly expressed in HK-2 cells treated with H2O2. DKK3 depletion increased H2O2-treated HK-2 cell viability and reduced cell apoptosis, oxidative stress, and fibrosis. Mechanically, DKK3 promoted formation of the β-catenin/TCF4 complex, and activated NOX4 transcription. Upregulation of NOX4 or TCF4 weakened the inhibitory effect of DKK3 knockdown on oxidative stress and fibrosis in H2O2-stimulated HK-2 cells. All our results suggested that DKK3 accelerated oxidative stress and fibrosis through promoting β-catenin/TCF4 complex-mediated activation of NOX4 transcription, which could lead to novel molecules and therapeutic targets for CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Abbreviations

CKD:

Chronic kidney disease

ROS:

Reactive oxygen species

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOX4:

NADPH oxidase 4

IPF:

Idiopathic pulmonary fibrosis

DKK3:

Dickkopf-3

UUO:

Unilateral ureteral obstruction

qRT-PCR:

Quantitative real-time polymerase chain reaction

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

ChIP:

Chromatin immunoprecipitation

Co-IP:

Co-immunoprecipitation

dn-TCF4:

Dominant-negative TCF-4

References

  1. Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, Massy Z, Wanner C, Anders HJ (2017) Chronic kidney disease. Nat Rev Dis Primers 3:17088. https://doi.org/10.1038/nrdp.2017.88

    Article  PubMed  Google Scholar 

  2. Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, Chen J, He J (2015) A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int 88:950–957. https://doi.org/10.1038/ki.2015.230

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382:260–272. https://doi.org/10.1016/s0140-6736(13)60687-x

    Article  PubMed  Google Scholar 

  4. Gorin Y (2016) The kidney: an organ in the front line of oxidative stress-associated pathologies. Antioxid. Redox Signal 25:639–641. https://doi.org/10.1089/ars.2016.6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Panizo S, Martínez-Arias L, Alonso-Montes C, Cannata P, Martín-Carro B, Fernández-Martín JL, Naves-Díaz M, Carrillo-López N, Cannata-Andía JB (2021) Fibrosis in chronic kidney disease: pathogenesis and consequences. Int J Mol Sci. https://doi.org/10.3390/ijms22010408

    Article  PubMed  PubMed Central  Google Scholar 

  6. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350. https://doi.org/10.1172/jci15518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho JH, Ryu HM, Oh EJ, Yook JM, Ahn JS, Jung HY, Choi JY, Park SH, Kim YL, Kwak IS, Kim CD (2016) Alpha1-antitrypsin attenuates renal fibrosis by inhibiting TGF-β1-induced epithelial mesenchymal transition. PLoS ONE 11:e0162186. https://doi.org/10.1371/journal.pone.0162186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheng L, Zhuang S (2020) New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front Physiol 11:569322. https://doi.org/10.3389/fphys.2020.569322

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Bi X, Xiong J, Han W, Xiao T, Xu X, Yang K, Liu C, Jiang W, He T, Yu Y, Li Y, Zhang J, Zhang B, Zhao J (2019) MicroRNA-34a promotes renal fibrosis by downregulation of klotho in tubular epithelial cells. Mol Ther 27:1051–1065. https://doi.org/10.1016/j.ymthe.2019.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  11. Zhang D, Ji P, Sun R, Zhou H, Huang L, Kong L, Li W, Li W (2022) Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice. Biomed Pharmacother. 150:112936. https://doi.org/10.1016/j.biopha.2022.112936

    Article  CAS  PubMed  Google Scholar 

  12. Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW Jr, Staruschenko A (2020) NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 34:13396–13408. https://doi.org/10.1096/fj.202000966RR

    Article  CAS  PubMed  Google Scholar 

  13. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal VJ (2014) Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 6:231–247. https://doi.org/10.1126/scitranslmed.3008182

    Article  CAS  Google Scholar 

  14. Zhou B, Mu J, Gong Y, Lu C, Zhao Y, He T, Qin Z (2017) Brd4 inhibition attenuates unilateral ureteral obstruction-induced fibrosis by blocking TGF-β-mediated Nox4 expression. Redox Biol 11:390–402. https://doi.org/10.1016/j.redox.2016.12.031

    Article  CAS  PubMed  Google Scholar 

  15. Federico G, Meister M, Mathow D, Heine GH, Moldenhauer G, Popovic ZV, Nordström V, Kopp-Schneider A, Hielscher T, Nelson PJ, Schaefer F, Porubsky S, Fliser D, Arnold B, Gröne HJ (2016) Tubular Dickkopf-3 promotes the development of renal atrophy and fibrosis. JCI Insight 1:e84916. https://doi.org/10.1172/jci.insight.84916

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zewinger S, Rauen T, Rudnicki M, Federico G, Wagner M, Triem S, Schunk SJ, Petrakis I, Schmit D, Wagenpfeil S, Heine GH, Mayer G, Floege J, Fliser D, Gröne HJ, Speer T (2018) Dickkopf-3 (DKK3) in urine identifies patients with short-term risk of eGFR loss. J Am Soc Nephrol 29:2722–2733. https://doi.org/10.1681/asn.2018040405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang X, Hu J, Chen Y, Shen W, Ke B (2020) Dickkopf-3: current knowledge in kidney diseases. Front Physiol 11:533344. https://doi.org/10.3389/fphys.2020.533344

    Article  PubMed  PubMed Central  Google Scholar 

  18. Piek A, Smit L, Suthahar N, Bakker SJL, de Boer RA, Silljé HHW (2021) The emerging plasma biomarker Dickkopf-3 (DKK3) and its association with renal and cardiovascular disease in the general population. Sci Rep 11:8642. https://doi.org/10.1038/s41598-021-88107-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schunk SJ, Floege J, Fliser D, Speer T (2021) WNT-β-catenin signalling: a versatile player in kidney injury and repair. Nat Rev Nephrol 17:172–184. https://doi.org/10.1038/s41581-020-00343-w

    Article  CAS  PubMed  Google Scholar 

  20. Huffstater T, Merryman WD, Gewin LS (2020) Wnt/β-catenin in acute kidney injury and progression to chronic kidney disease. Semin Nephrol 40:126–137. https://doi.org/10.1016/j.semnephrol.2020.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu X, Rudemiller NP, Ren J, Wen Y, Yang B, Griffiths R, Privratsky JR, Madan B, Virshup DM, Crowley SD (2019) Opposing actions of renal tubular- and myeloid-derived porcupine in obstruction-induced kidney fibrosis. Kidney Int 96:1308–1319. https://doi.org/10.1016/j.kint.2019.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. https://doi.org/10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, Xu Q, Du J, Liang X, Zeng J, Jia J (2022) Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29:2190–2202. https://doi.org/10.1038/s41418-022-01008-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin JZ, Li HY, Jin J, Piao SG, Shen XH, Wu YL, Xu JC, Zhang LY, Jiang YJ, Zheng HL, Jin YS, Cui S, Luo K, Quan Y, Li C (2020) Exogenous pancreatic kininogenase protects against renal fibrosis in rat model of unilateral ureteral obstruction. Acta Pharmacol Sin 41:1597–1608. https://doi.org/10.1038/s41401-020-0393-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu J, Xu Y, Xie W, Tang Y, Zhang H, Wang B, Mao J, Rui T, Jiang P, Zhang W (2021) Long noncoding RNA DLGAP1-AS2 facilitates Wnt1 transcription through physically interacting with Six3 and drives the malignancy of gastric cancer. Cell Death Discov 7:255. https://doi.org/10.1038/s41420-021-00649-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A, Aaronson SA (2009) Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene 28:2163–2172. https://doi.org/10.1038/onc.2009.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B (2019) Oxidative stress in chronic kidney disease. Pediatr Nephrol 34:975–991. https://doi.org/10.1007/s00467-018-4005-4

    Article  PubMed  Google Scholar 

  28. Su H, Wan C, Song A, Qiu Y, Xiong W, Zhang C (2019) Oxidative stress and renal fibrosis: mechanisms and therapies. Adv Exp Med Biol 1165:585–604. https://doi.org/10.1007/978-981-13-8871-2_29

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Gao C, Meng M, Tang H (2016) Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther 24:19–24. https://doi.org/10.4062/biomolther.2015.066

    Article  CAS  Google Scholar 

  30. Zheng G, Zhang J, Zhao H, Wang H, Pang M, Qiao X, Lee SR, Hsu TT, Tan TK, Lyons JG, Zhao Y, Tian X, Loebel DAF, Rubera I, Tauc M, Wang Y, Wang Y, Wang YM, Cao Q, Wang C, Lee VWS, Alexander SI, Tam PPL, Harris DCH (2016) α3 Integrin of cell-cell contact mediates kidney fibrosis by integrin-linked kinase in proximal tubular E-cadherin deficient mice. Am J Pathol 186:1847–1860. https://doi.org/10.1016/j.ajpath.2016.03.015

    Article  CAS  PubMed  Google Scholar 

  31. Gorin Y (2013) Nox4 as a potential therapeutic target for treatment of uremic toxicity associated to chronic kidney disease. Kidney Int 83:541–543. https://doi.org/10.1038/ki.2012.434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang Y, Liu H, Fang Y, Lin P, Lu Z, Zhang P, Jiao X, Teng J, Ding X, Dai Y (2021) Salvianolate ameliorates oxidative stress and podocyte injury through modulation of NOX4 activity in db/db mice. J Cell Mol Med 25:1012–1023. https://doi.org/10.1111/jcmm.16165

    Article  CAS  PubMed  Google Scholar 

  33. Li W, Cheng F, Songyang YY, Yang SY, Wei J, Ruan Y (2020) CTRP1 attenuates UUO-induced renal fibrosis via AMPK/NOX4 pathway in mice. Curr Med Sci 40:48–54. https://doi.org/10.1007/s11596-020-2145-9

    Article  CAS  PubMed  Google Scholar 

  34. Chen ZQ, Sun XH, Li XJ, Xu ZC, Yang Y, Lin ZY, Xiao HM, Zhang M, Quan SJ, Huang HQ (2020) Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway. Acta Pharmacol Sin 41:1587–1596. https://doi.org/10.1038/s41401-020-0475-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW, Müller GA, Goligorsky MS (2019) Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant 34:49–62. https://doi.org/10.1093/ndt/gfy100

    Article  CAS  PubMed  Google Scholar 

  36. Hecht A, Kemler R (2000) Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep 1:24–28. https://doi.org/10.1093/embo-reports/kvd012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pei J, Song N, Wu L, Qi J, Xia S, Xu C, Zheng B, Yang J, Qiu Y, Wang H, Jiang Y (2018) TCF4/β-catenin complex is directly upstream of FGF21 in mouse stomach cancer cells. Exp Ther Med 15:1041–1047. https://doi.org/10.3892/etm.2017.5493

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Lin P, Wang Q, Zheng M, Pang L (2018) Wnt3a-regulated TCF4/β-catenin complex directly activates the key Hedgehog signalling genes Smo and Gli1. Exp Ther Med 16:2101–2107. https://doi.org/10.3892/etm.2018.6379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li XT, Song JW, Zhang ZZ, Zhang MW, Liang LR, Miao R, Liu Y, Chen YH, Liu XY, Zhong JC (2022) Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic Biol Med 193:459–473. https://doi.org/10.1016/j.freeradbiomed.2022.10.320

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Dong ZJ, Song JW, Liang LR, Sun LL, Liu XY, Miao R, Xu YL, Li XT, Zhang MW, Zhang ZZ, Zhong JC (2022) MicroRNA-122–5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Exp Cell Res 411:113017. https://doi.org/10.1016/j.yexcr.2022.113017

    Article  CAS  PubMed  Google Scholar 

  41. Zhang LQ, Gao SJ, Sun J, Li DY, Wu JY, Song FH, Liu DQ, Zhou YQ, Mei W (2022) DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J Neuroinflammation 19:129. https://doi.org/10.1186/s12974-022-02495-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu D, Bao D, Dong W, Liu N, Zhang X, Gao S, Ge W, Gao X, Zhang L (2016) Dkk3 prevents familial dilated cardiomyopathy development through Wnt pathway. Lab Invest 96:239–248. https://doi.org/10.1038/labinvest.2015.145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments.

Funding

This work was supported by National Natural Science Foundation (82160143) and The Engineering Research Center of Kidney Disease in Jiangxi Province (20164BCD40095).

Author information

Authors and Affiliations

Authors

Contributions

JS: Conceptualization, Methodology, Writing—Original draft preparation, Investigation, Validation, Visualization. YC: Data curation, Software. YC: Data curation. MQ: Software. WX: Data curation. BK: Conceptualization, Writing—Original draft preparation, Supervision, Writing—Reviewing and Editing. XF: Conceptualization, Writing—Original draft preparation, Supervision, Writing—Reviewing and Editing

Corresponding authors

Correspondence to Ben Ke or Xiangdong Fang.

Ethics declarations

Conflict of interests

These authors declared no competing interests in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2023_4789_MOESM1_ESM.tif

Supplementary file1 (TIF 3043 KB) Figure S1 (A) HK-2 cells were treated with different concentrations of H2O2 (25, 50, 100, 200, 500, 800 μM) for 24 h and treated with 500 μM H2O2 for 6, 12, 24 and 36 h, and cell viability was tested by MTT assay. (B-C) HK-2 cells were treated with 500 μM H2O2 for 6, 12, 24 and 36 h, and DKK3 and NOX4 expression levels in cells were determined using qRT-PCR and western blot. (D) HK-2 cells were subjected to sh-DKK3 transfection upon H2O2 treatment, and β-catenin location was analyzed using IF. The measurement data were presented as mean ± SD. All data were obtained from at least three replicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001

11010_2023_4789_MOESM2_ESM.tif

Supplementary file2 (TIF 853 KB) Figure S2 LF3 treatment weakened the effect of H2O2 on HK-2 cells. (A-B) NOX4 expression level in cells was determined using qRT-PCR and western blot. (C) Cell viability was tested by MTT assay. (D) Cell apoptosis was analyzed by flow cytometry. The measurement data were presented as mean ± SD. All data were obtained from at least three replicate experiments. *p < 0.05, **p < 0.01, ***p < 0.001

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Chen, Y., Chen, Y. et al. DKK3 promotes oxidative stress injury and fibrosis in HK-2 cells by activating NOX4 via β-catenin/TCF4 signaling. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04789-x

Keywords

Navigation