Skip to main content
Log in

Isolation methods, proliferation, and adipogenic differentiation of adipose-derived stem cells from different fat depots in bovines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The adipose-derived stem cells (ASCs) are a valuable resource for regenerative medicine and essential materials for research in fat deposition. However, the isolation procedure of ASCs has not been standardized and needs to be harmonized; differences in proliferation and adipogenic differentiation of ASCs obtained from different fat depots have not been well characterized. In the present study, we compared the efficiency of ASCs isolation by enzymatic treatment and explant culture methods and the proliferation ability and adipogenic differentiation potential of ASCs isolated from subcutaneous and visceral fat depots. The explant culture method was simple and with no need for expensive enzymes while the enzymatic treatment method was complex, time consuming and costly. By the explant culture method, a larger number of ASCs were isolated from subcutaneous and visceral fat depots. By contrast, fewer ASCs were obtained by the enzymatic treatment method, especially from visceral adipose. ASCs isolated by the explant culture method performed well in cell proliferation and adipogenic differentiation, though they were slightly lower than those by the enzymatic treatment method. ASCs isolated from visceral depot demonstrated higher proliferation ability and adipogenic differentiation potential. In total, the explant culture method is simpler, more efficient, and lower cost than the enzymatic treatment method for ASCs isolation; compared with visceral adipose, subcutaneous adipose is easier to isolate ASCs; however, the visceral ASCs are superior to subcutaneous ASCs in proliferation and adipogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  2. Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S (2018) Adipose stem cell translational applications: from bench-to-bedside. Int J Mol Sci 19:3475. https://doi.org/10.3390/ijms19113475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. https://doi.org/10.1155/2012/812693

    Article  PubMed  PubMed Central  Google Scholar 

  4. Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765. https://doi.org/10.1016/j.biopha.2019.108765

    Article  CAS  PubMed  Google Scholar 

  5. Baer PC (2020) Adipose-derived stromal/stem cells. Cells 9:1997. https://doi.org/10.3390/cells9091997

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bukowska J, Szostek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcinska S, Gawronska-Kozak B (2021) Adipose-derived stromal/stem cells from large animal models: from basic to applied science. Stem Cell Rev Rep 17:719–738. https://doi.org/10.1007/s12015-020-10049-y

    Article  PubMed  Google Scholar 

  7. Busser H, De Bruyn C, Urbain F, Najar M, Pieters K, Raicevic G, Meuleman N, Bron D, Lagneaux L (2014) Isolation of adipose-derived stromal cells without enzymatic treatment: expansion, phenotypical, and functional characterization. Stem Cells Dev 23:2390–2400. https://doi.org/10.1089/scd.2014.0071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palumbo P, Lombardi F, Siragusa G, Cifone MG, Cinque B, Giuliani M (2018) Methods of isolation, characterization and expansion of human adipose-derived stem cells (ascs): an overview. Int J Mol Sci 19:1897. https://doi.org/10.3390/ijms19071897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fraser J, Wulur I, Alfonso Z, Zhu M, Wheeler E (2007) Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9:459–467. https://doi.org/10.1080/14653240701358460

    Article  CAS  PubMed  Google Scholar 

  10. Banyard DA, Salibian AA, Widgerow AD, Evans GR (2015) Implications for human adipose-derived stem cells in plastic surgery. J Cell Mol Med 19:21–30. https://doi.org/10.1111/jcmm.12425

    Article  PubMed  Google Scholar 

  11. Sampaio RV, Chiaratti MR, Santos DC, Bressan FF, Sangalli JR, Sa AL, Silva TV, Costa NN, Cordeiro MS, Santos SS, Ambrosio CE, Adona PR, Meirelles FV, Miranda MS, Ohashi OM (2015) Generation of bovine (bos indicus) and buffalo (bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet Mol Res 14:53–62. https://doi.org/10.4238/2015.January.15.7

    Article  CAS  PubMed  Google Scholar 

  12. Arnhold S, Elashry MI, Klymiuk MC, Geburek F (2019) Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ascs) from different fat sources in comparison with lipoma. Stem Cell Res Ther 10:309. https://doi.org/10.1186/s13287-019-1429-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208:64–76. https://doi.org/10.1002/jcp.20636

    Article  CAS  PubMed  Google Scholar 

  14. Francis MP, Sachs PC, Elmore LW, Holt SE (2010) Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6:11–14. https://doi.org/10.4161/org.6.1.10019

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lengi AJ, Corl BA (2010) Factors influencing the differentiation of bovine preadipocytes in vitro. J Anim Sci 88:1999–2008. https://doi.org/10.2527/jas.2009-2439

    Article  CAS  PubMed  Google Scholar 

  16. Shah FS, Wu X, Dietrich M, Rood J, Gimble JM (2013) A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 15:979–985. https://doi.org/10.1016/j.jcyt.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  17. Zeng G, Lai K, Li J, Zou Y, Huang H, Liang J, Tang X, Wei J, Zhang P (2013) A rapid and efficient method for primary culture of human adipose-derived stem cells. Organogenesis 9:287–295. https://doi.org/10.4161/org.27153

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pond CM (1992) An evolutionary and functional view of mammalian adipose tissue. Proc Nutr Soc 51:367–377. https://doi.org/10.1079/pns19920050

    Article  CAS  PubMed  Google Scholar 

  19. Baer PC, Koch B, Hickmann E, Schubert R, Cinatl JJ, Hauser IA, Geiger H (2019) Isolation, characterization, differentiation and immunomodulatory capacity of mesenchymal stromal/stem cells from human perirenal adipose tissue. Cells. https://doi.org/10.3390/cells8111346

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ritter A, Friemel A, Roth S, Kreis NN, Hoock SC, Safdar BK, Fischer K, Mollmann C, Solbach C, Louwen F, Yuan J (2019) Subcutaneous and visceral adipose-derived mesenchymal stem cells: commonality and diversity. Cells 8:1288. https://doi.org/10.3390/cells8101288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 17:644–656. https://doi.org/10.1016/j.cmet.2013.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schoettl T, Fischer IP, Ussar S (2018) Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol 221:jeb162958. https://doi.org/10.1242/jeb.162958

    Article  PubMed  Google Scholar 

  23. Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, Wang Y, He M, Li Y, Gui L, Shen L, Long K, Ma J, Wang X, Chen Z, Jiang Y, Tang G, Zhu L, Liu F, Zhang B, Huang Z, Li G, Li D, Gladyshev VN, Yin J, Gu Y, Li X, Li M (2021) A pig bodymap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat Commun 12:3715. https://doi.org/10.1038/s41467-021-23560-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ, Ritt MJ, van Milligen FJ (2008) Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res 332:415–426. https://doi.org/10.1007/s00441-007-0555-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60:538–544. https://doi.org/10.1097/SAP.0b013e3181723bbe

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu R, Feng X, Wei Y, Guo D, Li J, Liu Q, Jiang J, Shi D, Huang J (2021) LncSAMM50 enhances adipogenic differentiation of buffalo adipocytes with no effect on its host gene. Front Genet 12:626158. https://doi.org/10.3389/fgene.2021.626158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang J, Guo D, Zhu R, Feng Y, Li R, Yang X, Shi D (2022) FATP1 exerts variable effects on adipogenic differentiation and proliferation in cells derived from muscle and adipose tissue. Front Vet Sci 9:904879. https://doi.org/10.3389/fvets.2022.904879

    Article  PubMed  PubMed Central  Google Scholar 

  28. Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q, Peng J, Zhou Y, Jiang S, Peng J (2019) Zfp217 mediates m6a mrna methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation. Nucleic Acids Res 47:6130–6144. https://doi.org/10.1093/nar/gkz312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi R, Han X, Wang J, Qiu X, Wang Q, Yang F (2021) Microrna-489–3p promotes adipogenesis by targeting the postn gene in 3t3-l1 preadipocytes. Life Sci 278:119620. https://doi.org/10.1016/j.lfs.2021.119620

    Article  CAS  PubMed  Google Scholar 

  30. Giovanni DP, Franco S (2013) Obesity as a major risk factor for cancer. J Obes 2013:291546. https://doi.org/10.1155/2013/291546

    Article  CAS  Google Scholar 

  31. Talmor A, Dunphy B (2015) Female obesity and infertility. Best Pract Res Clin Obstet Gynaecol 29:498–506. https://doi.org/10.1016/j.bpobgyn.2014.10.014

    Article  PubMed  Google Scholar 

  32. Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127:1–4. https://doi.org/10.1172/JCI92035

    Article  PubMed  PubMed Central  Google Scholar 

  33. Powell-Wiley TM, Poirier P, Burke LE, Despres JP, Gordon-Larsen P, Lavie CJ, Lear SA, Ndumele CE, Neeland IJ, Sanders P, St-Onge MP (2021) Obesity and cardiovascular disease: a scientific statement from the american heart association. Circulation 143:e984–e1010. https://doi.org/10.1161/CIR.0000000000000973

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Zhang J, Gong H, Cui L, Zhang W, Ma J, Chen C, Ai H, Xiao S, Huang L, Yang B (2019) Genetic correlation of fatty acid composition with growth, carcass, fat deposition and meat quality traits based on gwas data in six pig populations. Meat Sci 150:47–55. https://doi.org/10.1016/j.meatsci.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  35. Huang J, Liu X, Feng X, Zhang M, Qu K, Liu J, Wei X, Huang B, Ma Y (2020) Characterization of different adipose depots in fattened buffalo: histological features and expression profiling of adipocyte markers. Arch Anim Breed 63:61–67. https://doi.org/10.5194/aab-63-61-2020

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luo N, Shu J, Yuan X, Jin Y, Cui H, Zhao G, Wen J (2022) Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genomics 23:308. https://doi.org/10.1186/s12864-022-08538-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang J, Feng X, Zhu R, Guo D, Wei Y, Cao X, Ma Y, Shi D (2020) Comparative transcriptome analysis reveals that pck1 is a potential gene affecting imf deposition in buffalo. BMC Genomics 21:710. https://doi.org/10.1186/s12864-020-07120-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Pan C, Ma X, Yang C, Tang L, Huang J, Wei X, Li H, Ma Y (2021) Identification and functional verification reveals that mir-195 inhibiting thrsp to affect fat deposition in xinyang buffalo. Front Genet 12:736441. https://doi.org/10.3389/fgene.2021.736441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamada T, Kamiya M, Higuchi M (2022) Metabolomic analysis of plasma and intramuscular adipose tissue between wagyu and holstein cattle. J Vet Med Sci 84:186–192. https://doi.org/10.1292/jvms.21-0562

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Zheng Q, Wang S, Wei X, Li F, Ma Y (2019) High-throughput rna sequencing reveals ndufc2-as lncrna promotes adipogenic differentiation in Chinese buffalo (Bubalus bubalis l). Genes (BASEL) 10:689. https://doi.org/10.3390/genes10090689

    Article  CAS  PubMed  Google Scholar 

  41. Hirai S, Matsumoto H, Hino N, Kawachi H, Matsui T, Yano H (2007) Myostatin inhibits differentiation of bovine preadipocyte. Domest Anim Endocrinol 32:1–14. https://doi.org/10.1016/j.domaniend.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  42. Deng Y, Huang G, Chen F, Testroet ED, Li H, Li H, Nong T, Yang X, Cui J, Shi D, Yang S (2019) Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. J Cell Physiol 234:17254–17268. https://doi.org/10.1002/jcp.28342

    Article  CAS  PubMed  Google Scholar 

  43. Ferjak EN, Cavinder CA, Sukumaran AT, Burnett DD, Lemley CO, Dinh T (2019) Fatty acid composition of mesenteric, cardiac, abdominal, intermuscular, and subcutaneous adipose tissues from horses of three body condition scores. Livest Sci 223:116–123. https://doi.org/10.1016/j.livsci.2019.02.010

    Article  Google Scholar 

  44. Costa AS, Lopes PA, Estevao M, Martins SV, Alves SP, Pinto R, Pissarra H, Correia JJ, Pinho M, Fontes C, Prates J (2012) Contrasting cellularity and fatty acid composition in fat depots from alentejana and barrosa bovine breeds fed high and low forage diets. Int J Biol Sci 8:214–227. https://doi.org/10.7150/ijbs.8.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. https://doi.org/10.1016/j.cell.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sobczuk-Szul M, Mochol M, Nogalski Z, Pogorzelska-Przybylek P (2021) Fatty acid profile as affected by fat depot and the sex category of polish holstein-friesian x limousin fattening cattle fed silage ad libitum. Anim Sci J 92:e13516. https://doi.org/10.1111/asj.13516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Guangxi Bagui Scholar Program, Innovation Project of Guangxi Graduate Education and Bama County Program for Talents in Science and Technology.

Funding

This study was supported by the National Natural Science Foundation of China (32060747 and U20A2051) and the Guangxi Natural Science Foundation (2020JJA130143 and 2021AC19014).

Author information

Authors and Affiliations

Authors

Contributions

JH, YM, and DS: concepts, design. RZ, YF, RL and KW, QL: material preparation. RZ, YF: experimental studies. RZ: validation, data analysis, software, and validation. JH: writing—reviewing and editing, funding acquisition, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jieping Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All animal protocols were approved by the Animal Care Committee of the College of Animal Science and Technology, Guangxi University (Gxu-2021-050).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Feng, Y., Li, R. et al. Isolation methods, proliferation, and adipogenic differentiation of adipose-derived stem cells from different fat depots in bovines. Mol Cell Biochem 479, 643–652 (2024). https://doi.org/10.1007/s11010-023-04753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04753-9

Keywords

Navigation