Skip to main content

Advertisement

Log in

KIAA1549 promotes the development and chemoresistance of colorectal cancer by upregulating ERCC2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Chemotherapy is the mainstay of treatment for patients with CRC in II-IV stages. Resistance to chemotherapy occurs commonly, which results in treatment failure. Therefore, the identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and developing new therapeutic strategies. Herein, we assessed the roles of KIAA1549 in promoting tumor development and chemoresistance in colorectal cancer. As a result, we found that KIAA1549 expression is up-regulation in CRC. Public databases revealed a progressive up-regulation of KIAA1549 expression from adenomas to carcinomas. Functional characterization uncovered that KIAA1549 promotes tumor malignant phenotypes and boosts the chemoresistance of CRC cells in an ERCC2-dependent manner. Inhibition of KIAA1549 and ERCC2 effectively enhanced the sensitivity to chemotherapeutic drugs oxaliplatin and 5-fluorouracil. Our findings suggest that endogenous KIAA1549 might function as a tumor development-promoting role and trigger chemoresistance in colorectal cancer partly by upregulating DNA repair protein ERCC2. Hence, KIAA1549 could be an effective therapeutic target for CRC and inhibition of KIAA1549 combined with chemotherapy might be a potential therapeutic strategy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Sinicrope FA (2022) Increasing incidence of early-onset colorectal cancer. N Engl J Med 386:1547–1558. https://doi.org/10.1056/NEJMra2200869

    Article  CAS  PubMed  Google Scholar 

  3. Pastushok L, Fu Y, Lin L et al (2019) A novel cell-penetrating antibody Fragment inhibits the DNA repair protein RAD51. Sci Rep. https://doi.org/10.1038/s41598-019-47600-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gustavsson B, Carlsson G, Machover D et al (2015) A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer 14:1–10. https://doi.org/10.1016/j.clcc.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Mellor HR, Callaghan R (2008) Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 81:275–300. https://doi.org/10.1159/000115967

    Article  CAS  PubMed  Google Scholar 

  6. Biagi JJ, Raphael MJ, Mackillop WJ et al (2011) Association between time to initiation of adjuvant chemotherapy and survival in colorectal cancer: a systematic review and meta-analysis. JAMA 305:2335–2342. https://doi.org/10.1001/jama.2011.749

    Article  CAS  PubMed  Google Scholar 

  7. Jeuken JW, Wesseling P (2010) MAPK pathway activation through BRAF gene fusion in pilocytic astrocytomas; a novel oncogenic fusion gene with diagnostic, prognostic, and therapeutic potential. J Pathol 222:324–328. https://doi.org/10.1002/path.2780

    Article  CAS  PubMed  Google Scholar 

  8. Jones DTW, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677. https://doi.org/10.1158/0008-5472.CAN-08-2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jain P, Silva A, Han HJ et al (2017) Overcoming resistance to single-agent therapy for oncogenic BRAF gene fusions via combinatorial targeting of MAPK and PI3K/mTOR signaling pathways. Oncotarget. https://doi.org/10.18632/oncotarget.20949

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen R, Keoni C, Waker CA et al (2019) KIAA1549-BRAF expression establishes a permissive tumor microenvironment through NFκB-mediated CCL2 production. Neoplasia 21:52–60. https://doi.org/10.1016/j.neo.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  11. Kumar A, Pathak P, Purkait S et al (2015) Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet 208:91–95. https://doi.org/10.1016/j.cancergen.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  12. Kaul A, Chen Y-H, Emnett RJ et al (2012) Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev 26:2561–2566. https://doi.org/10.1101/gad.200907.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karajannis MA, Legault G, Fisher MJ et al (2014) Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro-Oncol 16:1408–1416. https://doi.org/10.1093/neuonc/nou059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subbiah V, Westin SN, Wang K et al (2014) Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J Hematol OncolJ Hematol Oncol 7:8. https://doi.org/10.1186/1756-8722-7-8

    Article  CAS  Google Scholar 

  15. Li N, Zhan X (2019) Identification of clinical trait–related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J 10:273–290. https://doi.org/10.1007/s13167-019-00175-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin M, Fang Y, Li Z et al (2021) S100P contributes to promoter demethylation and transcriptional activation of SLC2A5 to promote metastasis in colorectal cancer. Br J Cancer 125:734–747. https://doi.org/10.1038/s41416-021-01306-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antonelli M, Badiali M, Moi L et al (2015) KIAA1549:BRAF fusion gene in pediatric brain tumors of various histogenesis. Pediatr Blood Cancer 62:724–727. https://doi.org/10.1002/pbc.25272

    Article  CAS  PubMed  Google Scholar 

  18. Nagase T (2000) Prediction of the coding sequences of unidentified Human GENES. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 7:271–281. https://doi.org/10.1093/dnares/7.4.271

    Article  Google Scholar 

  19. Gupta S, Provenzale D, Llor X et al (2019) NCCN guidelines insights: genetic/Familial High-Risk assessment: colorectal, version 2.2019. J Natl Compr Cancer Netw JNCCN 17:1032–1041. https://doi.org/10.6004/jnccn.2019.0044

    Article  PubMed  Google Scholar 

  20. Kopetz S, Hoff PM, Morris JS et al (2010) Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol Off J Am Soc Clin Oncol 28:453–459. https://doi.org/10.1200/JCO.2009.24.8252

    Article  CAS  Google Scholar 

  21. Graf N, Ang WH, Zhu G et al (2011) Role of endonucleases XPF and XPG in nucleotide excision repair of platinated DNA and cisplatin/oxaliplatin cytotoxicity. ChemBioChem 12:1115–1123. https://doi.org/10.1002/cbic.201000724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan X, Zhang W, He Y et al (2020) Proteomic analysis of cisplatin- and oxaliplatin-induced phosphorylation in proteins bound to Pt-DNA adducts. Met Integr Biometal Sci 12:1834–1840. https://doi.org/10.1039/d0mt00194e

    Article  CAS  Google Scholar 

  23. Metzger R, Leichman CG, Danenberg KD et al (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316. https://doi.org/10.1200/JCO.1998.16.1.309

    Article  CAS  PubMed  Google Scholar 

  24. Welsh C, Day R, McGurk C et al (2004) Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines. Int J Cancer 110:352–361. https://doi.org/10.1002/ijc.20134

    Article  CAS  PubMed  Google Scholar 

  25. Dabholkar M, Vionnet J, Bostick-Bruton F et al (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94:703–708. https://doi.org/10.1172/JCI117388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berndt SI, Platz EA, Fallin MD et al (2006) Genetic variation in the nucleotide excision repair pathway and colorectal cancer risk. Cancer Epidemiol Prev Biomark 15:2263–2269. https://doi.org/10.1158/1055-9965.EPI-06-0449

    Article  CAS  Google Scholar 

  27. Gurubhagavatula S, Liu G, Park S et al (2004) XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 22:2594–2601. https://doi.org/10.1200/JCO.2004.08.067

    Article  CAS  PubMed  Google Scholar 

  28. Joo J, Yoon K-A, Hayashi T et al (2016) Nucleotide excision repair gene ERCC2 and ERCC5 variants increase risk of uterine cervical cancer. Cancer Res Treat 48:708–714. https://doi.org/10.4143/crt.2015.098

    Article  CAS  PubMed  Google Scholar 

  29. Lee M-S, Liu C, Su L, Christiani DC (2015) Polymorphisms in ERCC1 and ERCC2/XPD genes and carcinogen DNA adducts in human lung. Lung Cancer 89:8–12. https://doi.org/10.1016/j.lungcan.2015.05.001

    Article  PubMed  Google Scholar 

  30. Boldrin E, Malacrida S, Rumiato E et al (2019) Association between ERCC1 rs3212986 and ERCC2/XPD rs1799793 and OS in patients with advanced esophageal cancer. Front Oncol. https://doi.org/10.3389/fonc.2019.00085

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li Q, Damish AW, Frazier Z et al (2019) ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer. Clin Cancer Res 25:977–988. https://doi.org/10.1158/1078-0432.CCR-18-1001

    Article  CAS  PubMed  Google Scholar 

  32. Damia G, Guidi G, D’Incalci M (1998) Expression of genes involved in nucleotide excision repair and sensitivity to cisplatin and melphalan in human cancer cell lines. Eur J Cancer 34:1783–1788. https://doi.org/10.1016/S0959-8049(98)00190-7

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Yu X, Ding Y et al (2016) MiR-770–5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2. Oncotarget 7:53254–53268. https://doi.org/10.18632/oncotarget.10736

    Article  PubMed  PubMed Central  Google Scholar 

  34. O’Grady S, Finn SP, Cuffe S, Richard DJ, O’Byrne KJ, Barr MP (2014) The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer Treat Rev 40(10):1161–70. https://doi.org/10.1016/j.ctrv.2014.10.003

  35. Weaver DA, Crawford EL, Warner KA, et al (2005) ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines. Mol Cancer 4:18. https://doi.org/10.1186/1476-4598-4-18

Download references

Acknowledgements

We thank all laboratory members of the Department of Pathology of Southern Medical University for their support and comments. The schematic graph is drawn by FigDraw.

Funding

This study was supported by National Natural Science Foundation of China (82273564, 82073342, 82103595); Science and Technology Projects in Guangzhou, China (202206010045, 202201010911); Guangdong Provincial Regional Joint Fund-Youth Fund Project (2020A1515110006); The Foundation of President of Nanfang Hospital (2020C039, 2020C033, 2020C006, 2020B012, 2019B009).

Author information

Authors and Affiliations

Authors

Contributions

FY, YX, ML: Conceptualization, Methodology, Software, Writing-Original draft preparation. YL, YF: Writing—Reviewing and Editing. KC: Supervision. YZ, YD: Project administration. All authors discussed the results and approved the manuscript.

Corresponding author

Correspondence to Yi Ding.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Nanfang Hospital of Southern Medical University (NEFC-2022-367).

Consent to publish

All authors read and approved the fnal manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 49681 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Xie, Y., Lin, M. et al. KIAA1549 promotes the development and chemoresistance of colorectal cancer by upregulating ERCC2. Mol Cell Biochem 479, 629–642 (2024). https://doi.org/10.1007/s11010-023-04751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04751-x

Keywords

Navigation