Skip to main content

Advertisement

Log in

Zinc and hypoxic preconditioning: a strategy to enhance the functionality and therapeutic potential of bone marrow-derived mesenchymal stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The therapeutic use of bone marrow mesenchymal stem cells (BM-MSCs) requires a large number of cells (1–100 × 106 cells/kg of body weight). Extensive in vitro growth is limited due to the aging of cultured BM-MSCs which leads to abnormal morphology and senescence. Hypoxia increases BM-MSC proliferation, but the question of whether hypoxia preconditioning is safe for clinical application of BM-MSCs remains to be answered. Zinc is essential for cell proliferation and differentiation, especially for the regulation of DNA synthesis and mitosis. It is a structural constituent of numerous proteins on a molecular level, including transcription factors and enzymes of cellular signaling machinery. All the tissues, fluids, and organs of the human body contain zinc. More than 95% of zinc is intracellular, of which 44% is involved in the transcription of DNA. We investigated the effects of ZnCl2 on proliferation, morphology, migration, population doubling time (PDT), and gene expression of BM-MSCs under hypoxic (1% O2) and normoxic (21% O2) environments. BM-MSCs were preconditioned with optimized concentrations of ZnCl2 under normoxic and hypoxic environments and further examined for morphology by the phase-contrast inverted microscope, cell proliferation by MTT assay, PDT, cell migration ability, and gene expression analysis. Zinc significantly enhanced the proliferation of BM-MSCs, and it decreases PDT under hypoxic and normoxic environments as compared to control cells. Migration of BM-MSCs toward the site of injury increased and expression of HIF1-α significantly decreased under hypoxic conditions as compared to non-treated hypoxic cells and control. At late passages (P9), the morphology of normoxic BM-MSCs was transformed into large, wide, and flat cells, and they became polygonal and lost their communication with other cells. Conversely, zinc-preconditioned BM-MSCs retained their spindle-shaped, fibroblast-like morphology at P9. The expression of proliferative genes was found significantly upregulated, while downregulation of genes OCT4 and CCNA2 was observed in zinc-treated BM-MSCs under both normoxic and hypoxic conditions. ZnCl2 treatment can be used for extensive expansion of BM-MSCs in aged populations to obtain a large number of cells required for systemic administration to produce therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

I declare that I have no other data to share. All the information is included in the manuscript.

References

  1. Ekram S, Khalid S, Salim A, Khan I (2021) Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World J Stem Cells 13(12):1881–1904. https://doi.org/10.4252/wjsc.v13.i12.1881

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dabrowska S, Andrzejewska A, Janowski M, Lukomska B (2021) Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Front Immunol 11:3809

    Article  Google Scholar 

  3. Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ (2021) Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 78(2):447–467

    Article  PubMed  CAS  Google Scholar 

  4. Dunavin N, Dias A, Li M, McGuirk J (2017) Mesenchymal stromal cells: what is the mechanism in acute graft-versus-host disease? Biomedicines 5(3):39

    Article  PubMed Central  Google Scholar 

  5. Oja S, Komulainen P, Penttilä A, Nystedt J, Korhonen M (2018) Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther 9(1):1–3

    Article  Google Scholar 

  6. Liu TM, Ng WM, Tan HS, Vinitha D, Yang Z, Fan JB, Zou Y, Hui JH, Lee EH, Lim B (2013) Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev 22:268–278

    Article  PubMed  Google Scholar 

  7. Antebi B, Rodriguez LA 2nd, Walker KP 3rd, Asher AM, Kamucheka RM, Alvarado L, Mohammadipoor A, Cancio LC (2018) Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9:265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dos Santos F, Andrade PZ, Boura JS, Abecasis MM, Da Silva CL, Cabral JM (2010) Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol 223(1):27–35

    PubMed  Google Scholar 

  9. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, Hung SC (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A–p21 by HIF-TWIST. Blood 117:459–469

    Article  PubMed  CAS  Google Scholar 

  10. Ejtehadifar M, Shamsasenjan K, Movassaghpour A, Akbarzadehlaleh P, Dehdilani N, Abbasi P, Molaeipour Z, Saleh M (2015) The effect of hypoxia on mesenchymal stem cell biology. Adv Pharm Bull 5:141–149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. García-Pastor C, Benito-Martínez S, Moreno-Manzano V, Fernández-Martínez AB, Lucio-Cazaña FJ (2019) Mechanism and consequences of the impaired Hif-1α response to hypoxia in human proximal tubular HK-2 cells exposed to high glucose. Sci Rep 9:15868

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gupta N, Nizet V (2018) Stabilization of hypoxia-inducible factor-1 alpha augments the therapeutic capacity of bone marrow-derived mesenchymal stem cells in experimental pneumonia. Front Med 4(5):131

    Article  Google Scholar 

  13. Feng XD, Zhu JQ, Zhou JH, Lin FY, Feng B, Shi XW, Pan QL, Yu J, Li LJ, Cao HC (2021) Hypoxia-inducible factor-1α–mediated upregulation of CD99 promotes the proliferation of placental mesenchymal stem cells by regulating ERK1/2. World J Stem Cells 13(4):317

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teti G, Focaroli S, Salvatore V, Mazzotti E, Ingra L, Mazzotti A, Falconi M (2018) The hypoxia-mimetic agent cobalt chloride differently affects human mesenchymal stem cells in their chondrogenic potential. Stem Cells Int 13:2018

    Google Scholar 

  15. Emokpae MA, Moronkeji MA (2020) Association of copper-to zinc ratio with sperm concentration among males investigated for infertility. J Infertil Reprod Biol 8(3):49–52

    Article  Google Scholar 

  16. Rizvi S, Wasim B, Borges K, Usman S, Shah M, Khan I (2020) Impact of zinc chloride on cellular viability of bone marrow derived mesenchymal stem cells. Int J Biol Pharm Allied Sci 9:9. https://doi.org/10.31032/IJBPAS/2020/9.1.4918

    Article  Google Scholar 

  17. Lehvy AI, Horev G, Golan Y, Glaser F, Shammai Y, Assaraf YG (2019) Alterations in ZnT1 expression and function lead to impaired intracellular zinc homeostasis in cancer. Cell Death Discov 5(1):1–2

    Article  CAS  Google Scholar 

  18. Goto T, Murata M, Nishida T, Terakura S, Kamoshita S, Ishikawa Y, Ushijima Y, Adachi Y, Suzuki S, Kato K, Hirakawa A (2021) Phase I clinical trial of intra-bone marrow cotransplantation of mesenchymal stem cells in cord blood transplantation. Stem Cells Transl Med 10(4):542–553

    Article  PubMed  Google Scholar 

  19. Antebi B, Rodriguez LA, Walker KP, Asher AM, Kamucheka RM, Alvarado L, Mohammadipoor A, Cancio LC (2018) Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9(1):1–5

    Article  Google Scholar 

  20. Ali A, Akhter MA, Haneef K, Khan I, Naeem N, Habib R, Kabir N, Salim A (2015) Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells. Gene 555(2):448–457

    Article  PubMed  CAS  Google Scholar 

  21. Neri S (2019) Genetic stability of mesenchymal stromal cells for regenerative medicine applications: a fundamental biosafety aspect. Int J Mol Sci 20(10):2406

    Article  PubMed Central  Google Scholar 

  22. Berniakovich I, Giorgio M (2013) Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int J Mol Sci 14(1):2119–2134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Choi JR, Pingguan-Murphy B, Wan Abas WAB, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WKZ (2015) In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS ONE 10:e0115034. https://doi.org/10.1371/journal.pone.0115034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bobyleva PI, Andreeva ER, Gornostaeva AN, Buravkova LB (2016) Tissue-related hypoxia attenuates proinflammatory effects of allogeneic pbmcs on adipose-derived stromal cells in vitro. Stem Cells Int 6:2016

    Google Scholar 

  25. Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L, Yang S, Yan S, Mao A, Zhang J, Yang Y, Wang S, Cui J, Liang L, Ji Y, Han ZB, Fang X, Han ZC (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4:e950–e950. https://doi.org/10.1038/cddis.2013.480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Estrada JC, Torres Y, Benguría A, Dopazo A, Roche E, Carrera-Quintanar L, Pérez RA, Enríquez JA, Torres R, Ramírez JC, Samper E, Bernad A (2013) Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis 4:e691–e691. https://doi.org/10.1038/cddis.2013.211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li X-Y, Ding J, Zheng Z, Li X-Y, Wu Z-B, Zhu P (2012) Long-term culture in vitro impairs the immunosuppressive activity of mesenchymal stem cells on T cells. Mol Med Rep 6:1183–1189. https://doi.org/10.3892/mmr.2012.1039

    Article  PubMed  CAS  Google Scholar 

  28. Uchida F, Uzawa K, Kasamatsu A, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Bukawa H, Tanzawa H (2013) Overexpression of CDCA2 in human squamous cell carcinoma: correlation with prevention of G1 phase arrest and apoptosis. PLoS ONE 8:e56381–e56381. https://doi.org/10.1371/journal.pone.0056381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Harding SM, Coackley C, Bristow RG (2011) ATM-dependent phosphorylation of 53BP1 in response to genomic stress in oxic and hypoxic cells. Radiother Oncol 99(3):307–312

    Article  PubMed  CAS  Google Scholar 

  30. Kwon SY, Chun SY, Ha Y-S, Kim DH, Kim J, Song PH, Kim HT, Yoo ES, Kim BS, Kwon TG (2017) Hypoxia enhances cell properties of human mesenchymal stem cells. Tissue Eng Regen Med 14:595–604. https://doi.org/10.1007/s13770-017-0068-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Matic I, Antunovic M, Brkic S, Josipovic P, Mihalic KC, Karlak I, Ivkovic A, Marijanovic I (2016) Expression of OCT-4 and SOX-2 in bone marrow-derived human mesenchymal stem cells during osteogenic differentiation. Open Access Maced J Med Sci 4(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hung S-P, Yang M-H, Tseng K-F, Lee OK (2013) Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant 22:1869–1882. https://doi.org/10.3727/096368912X657954

    Article  PubMed  Google Scholar 

  33. Fathi E, Farahzadi R (2018) Zinc sulphate mediates the stimulation of cell proliferation of rat adipose tissue-derived mesenchymal stem cells under high intensity of emf exposure. Biol Trace Elem Res 184:529–535. https://doi.org/10.1007/s12011-017-1199-4

    Article  PubMed  CAS  Google Scholar 

  34. Moon MY, Kim HJ, Choi BY, Sohn M, Chung TN, Suh SW (2018) Zinc promotes adipose-derived mesenchymal stem cell proliferation and differentiation towards a neuronal fate. Stem Cells Int 2018:5736535. https://doi.org/10.1155/2018/5736535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bafaro E, Liu Y, Xu Y, Dempski RE (2017) The emerging role of zinc transporters in cellular homeostasis and cancer. Signal Transduct Target Ther 2:17029. https://doi.org/10.1038/sigtrans.2017.29

    Article  PubMed  PubMed Central  Google Scholar 

  36. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841–7845. https://doi.org/10.1073/pnas.141221698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mareschi K, Rustichelli D, Calabrese R, Gunetti M, Sanavio F, Castiglia S, Risso A, Ferrero I, Tarella C, Fagioli F (2012) Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use. Stem Cells Int 2012:920581–920581. https://doi.org/10.1155/2012/920581

    Article  PubMed  Google Scholar 

  38. Di Donna S, Mamchaoui K, Cooper RN, Seigneurin-Venin S, Tremblay J, Butler-Browne GS, Mouly V (2003) Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their Immortalization11Université Pierre et Marie Curie; Centre National de la Recherche Scientifique; Association de Recherche contre le Cancer (ARC); Association Française contre les Myopathies (AFM); European Community (contract QLK6-1999-02034); and the Parent’s Project (Netherlands). SDD was supported successively by ARC, the Fondation pour la Recherche Médicale (FRM), and by AFM. RNC was supported by the AFM. Mol Cancer Res 1(9):643–653

    PubMed  Google Scholar 

  39. Farahzadi R, Fathi E, Mesbah-Namin SA, Zarghami N (2017) Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells. PLoS ONE 12:e0188052. https://doi.org/10.1371/journal.pone.0188052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xu W, Xu R, Li Z, Wang Y, Hu R (2019) Hypoxia changes chemotaxis behaviour of mesenchymal stem cells via HIF-1α signalling. J Cell Mol Med 23:1899–1907. https://doi.org/10.1111/jcmm.14091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Li L, Jaiswal PK, Makhoul G, Jurakhan R, Selvasandran K, Ridwan K, Cecere R (2017) Hypoxia modulates cell migration and proliferation in placenta-derived mesenchymal stem cells. J Thorac Cardiovasc Surg 154:543-552.e3. https://doi.org/10.1016/j.jtcvs.2017.03.141

    Article  PubMed  CAS  Google Scholar 

  42. Morand J, Briancon-Marjollet A, Lemarie E, Gonthier B, Arnaud J, Korichneva I, Godin-Ribuot D (2019) Zinc deficiency promotes endothelin secretion and endothelial cell migration through nuclear hypoxia-inducible factor-1 translocation. Am J Physiol Cell Physiol 317:C270-c276. https://doi.org/10.1152/ajpcell.00460.2018

    Article  PubMed  CAS  Google Scholar 

  43. Ghasemzadeh-Hasankolai M, Batavani R, Eslaminejad MB, Sedighi-Gilani M (2012) Effect of zinc ions on differentiation of bone marrow-derived mesenchymal stem cells to male germ cells and some germ cell-specific gene expression in rams. Biol Trace Elem Res 150:137–146. https://doi.org/10.1007/s12011-012-9484-8

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi S, Miura C, Kikuchi K, Celino FT, Agusa T, Tanabe S, Miura T (2009) Zinc is an essential trace element for spermatogenesis. Proc Natl Acad Sci USA 106:10859–10864. https://doi.org/10.1073/pnas.0900602106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

SFAR performed the experiments and wrote the manuscript. BW evaluated, analyzed, and reviewed the data. SU and KJJB evaluated, analyzed, and reviewed the data, and assisted in manuscript preparation. IS performed experiments. AS analyzed the data and reviewed and edited the manuscript. IK designed the experiments, analyzed the data, and finalized the manuscript.

Corresponding author

Correspondence to Irfan Khan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The procedures followed in this study were approved by the local independent ethics committee for human subjects IEC-052-HT-2020 at PCMD, ICCBS, University of Karachi, Karachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2344 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, S.F.A., Wasim, B., Usman, S. et al. Zinc and hypoxic preconditioning: a strategy to enhance the functionality and therapeutic potential of bone marrow-derived mesenchymal stem cells. Mol Cell Biochem 477, 2735–2749 (2022). https://doi.org/10.1007/s11010-022-04468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04468-3

Keywords

Navigation