Skip to main content

Advertisement

Log in

Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

SNP rs3755955 (major/minor allele: G/A) located in Iduronidase-Alpha-L- (IDUA) gene was reported to be significant for human bone mineral density (BMD). This follow-up study was to uncover the underlying association mechanism through molecular and cellular functional assays relevant to bone. We tested the effects of single nucleotide polymorphisms (SNP) rs3755955 (defined allele G as wild-type and allele A as variant-type) on osteoblastic and osteoclastic functions, as well as protein phosphorylation in stably transfected human fetal osteoblast (hFOB) cell and mononuclear-macrophage (RAW264.7) cell. In hFOB cells, transfection with variant-type IDUA significantly decreased osteoblastic gene expression (OPN, COL1A1 and RANKL) (p < 0.01), impeded cell proliferation (p < 0.05), stimulated cell apoptosis (p < 0.001) and decreased ALP enzyme activity, as compared with that of wild-type IDUA transfection. In RAW264.7 cells, transfection with variant-type IDUA significantly inhibited cell apoptosis (p < 0.01), promoted osteoclastic precursor cell migration (p < 0.0001), growth (p < 0.01), osteoclastic gene expression (TRAP, RANK, Inte-αv and Cath-K) (p < 0.05) and TRAP enzyme activity (p < 0.001), as compared with that of wild-type IDUA transfection. In both hFOB and RAW264.7 cells, the total protein and IDUA protein-specific phosphorylation levels were significantly reduced by variant IDUA transfection, as compared with that of wild-type IDUA transfection (p < 0.05). Variant allele A of phosSNP rs3755955 in IDUA gene regulates protein phosphorylation, inhibits osteoblast function and promotes osteoclastic activity. The SNP rs3755955 could alter IDUA protein phosphorylation, significantly regulates human osteoblastic and osteoclastic gene expression, and influences the growth, differentiation and activity of osteoblast and osteoclast, hence to affect BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The data used during the current study are available from the corresponding author upon request.

Code availability

Not applicable.

References

  1. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  Google Scholar 

  2. Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of osteoporosis. Endocr Rev 23:303–326

    Article  CAS  Google Scholar 

  3. Estrada K, Styrkarsdottir U, Evangelou E, Hsu Y-H, Duncan EL, Ntzani EE, Oei L, Albagha OME, Amin N, Kemp JP, Koller DL, Li G, Liu C-T, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao S-M, Yerges-Armstrong LM, Zheng H-F, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, González-Macías J, Kähönen M, Karlsson M, Khusnutdinova E, Koh J-M, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren Ö, Lorenc RS, Marc J, Mellström D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NLS, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gómez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs JBJ, Verlaan D, Williams FMK, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw K-T, Lehtimäki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HAP, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AWC, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JPA, Kiel DP, Rivadeneira F (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44:491–501. https://doi.org/10.1038/ng.2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richards JB, Zheng H-F, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13:576–588. https://doi.org/10.1038/nrg3228

    Article  CAS  PubMed  Google Scholar 

  5. Zheng H-F, Forgetta V, Hsu Y-H, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu C-T, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou W-C, Mokry LE, Moayyeri A, Claussnitzer M, Cheng C-H, Cheung W, Medina-Gómez C, Ge B, Chen S-H, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LCPGM, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellström D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren Ö, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussière J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen J-EB, Kaptoge S, Khaw K-T, Reeve J, Formosa MM, Xuereb-Anastasi A, Åkesson K, McGuigan FE, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey-Smith G, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs JBJ, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CMT, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert-Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526:112–117. https://doi.org/10.1038/nature14878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooper DN, Chen J-M, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD (2010) Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 31:631–655. https://doi.org/10.1002/humu.21260

    Article  CAS  PubMed  Google Scholar 

  7. Deng F-Y, Tan L-J, Shen H, Liu Y-J, Liu Y-Z, Li J, Zhu X-Z, Chen X-D, Tian Q, Zhao M, Deng H-W (2013) SNP rs6265 regulates protein phosphorylation and osteoblast differentiation and influences BMD in humans. J Bone Miner Res 28:2498–2507. https://doi.org/10.1002/jbmr.1997

    Article  CAS  PubMed  Google Scholar 

  8. Ren J, Jiang C, Gao X, Liu Z, Yuan Z, Jin C, Wen L, Zhang Z, Xue Y, Yao X (2010) PhosSNP for systematic analysis of genetic polymorphisms that influence protein phosphorylation. Mol Cell Proteomics 9:623–634. https://doi.org/10.1074/mcp.M900273-MCP200

    Article  CAS  PubMed  Google Scholar 

  9. Hunter T (2000) Signaling–2000 and beyond. Cell 100:113–127

    Article  CAS  Google Scholar 

  10. Hardie DG (2015) AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33:1–7. https://doi.org/10.1016/j.ceb.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  11. Liu C, Zhao W, Meng W, Zhao T, Chen Y, Ahokas RA, Liu H, Sun Y (2014) Platelet-derived growth factor blockade on cardiac remodeling following infarction. Mol Cell Biochem 397:295–304. https://doi.org/10.1007/s11010-014-2197-x

    Article  CAS  PubMed  Google Scholar 

  12. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    Article  CAS  Google Scholar 

  13. Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364:593–611

    Article  CAS  Google Scholar 

  14. Mithraprabhu S, Loveland KL (2009) Control of KIT signalling in male germ cells: what can we learn from other systems? Reproduction 138:743–757. https://doi.org/10.1530/REP-08-0537

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Ye JX, Xu MH, Zhao MD, Yuan FL (2017) Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway. Osteoporos Int 28:2221–2231. https://doi.org/10.1007/s00198-017-4017-0

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y-Q, Hong Z-L, Zhan L-B, Chu H-Y, Zhang X-Z, Li G-H (2016) Wedelolactone enhances osteoblastogenesis by regulating Wnt/β-catenin signaling pathway but suppresses osteoclastogenesis by NF-κB/c-fos/NFATc1 pathway. Sci Rep 6:32260. https://doi.org/10.1038/srep32260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niu T, Liu N, Yu X, Zhao M, Choi HJ, Leo PJ, Brown MA, Zhang L, Pei YF, Shen H, He H, Fu X, Lu S, Chen XD, Tan LJ, Yang TL, Guo Y, Cho NH, Shen J, Guo YF, Nicholson GC, Prince RL, Eisman JA, Jones G, Sambrook PN, Tian Q, Zhu XZ, Papasian CJ, Duncan EL, Uitterlinden AG, Shin CS, Xiang S, Deng HW (2016) Identification of IDUA and WNT16 phosphorylation-related non-synonymous polymorphisms for bone mineral density in meta-analyses of genome-wide association studies. J Bone Miner Res 31:358–368. https://doi.org/10.1002/jbmr.2687

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Choi HJ, Estrada K, Leo PJ, Li J, Pei YF, Zhang Y, Lin Y, Shen H, Liu YZ, Liu Y, Zhao Y, Zhang JG, Tian Q, Wang YP, Han Y, Ran S, Hai R, Zhu XZ, Wu S, Yan H, Liu X, Yang TL, Guo Y, Zhang F, Guo YF, Chen Y, Chen X, Tan L, Zhang L, Deng FY, Deng H, Rivadeneira F, Duncan EL, Lee JY, Han BG, Cho NH, Nicholson GC, McCloskey E, Eastell R, Prince RL, Eisman JA, Jones G, Reid IR, Sambrook PN, Dennison EM, Danoy P, Yerges-Armstrong LM, Streeten EA, Hu T, Xiang S, Papasian CJ, Brown MA, Shin CS, Uitterlinden AG, Deng HW (2014) Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet 23:1923–1933. https://doi.org/10.1093/hmg/ddt575

    Article  CAS  PubMed  Google Scholar 

  19. Scott HS, Ashton LJ, Eyre HJ, Baker E, Brooks DA, Callen DF, Sutherland GR, Morris CP, Hopwood JJ (1990) Chromosomal localization of the human alpha-L-iduronidase gene (IDUA) to 4p16.3. Am J Hum Genet 47:802–807

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim C, Kwak MJ, Cho SY, Ko A-R, Rheey J, Kwon J-Y, Chung Y, Jin D-K (2015) Decreased performance in IDUA knockout mouse mimic limitations of joint function and locomotion in patients with Hurler syndrome. Orphanet J Rare Dis 10:121. https://doi.org/10.1186/s13023-015-0337-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuehn SC, Koehne T, Cornils K, Markmann S, Riedel C, Pestka JM, Schweizer M, Baldauf C, Yorgan TA, Krause M, Keller J, Neven M, Breyer S, Stuecker R, Muschol N, Busse B, Braulke T, Fehse B, Amling M, Schinke T (2015) Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I. Hum Mol Genet 24:7075–7086. https://doi.org/10.1093/hmg/ddv407

    Article  CAS  PubMed  Google Scholar 

  22. Pasqualim G, Ribeiro MG, da Fonseca GGG, Szlago M, Schenone A, Lemes A, Rojas MVM, Matte U, Giugliani R (2015) p. L18P: a novel IDUA mutation that causes a distinct attenuated phenotype in mucopolysaccharidosis type I patients. Clin Genet 88:376–380. https://doi.org/10.1111/cge.12507

    Article  CAS  PubMed  Google Scholar 

  23. Parfitt AM (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res 4:1–6

    Article  CAS  Google Scholar 

  24. Dai Q, Xu Z, Ma X, Niu N, Zhou S, Xie F, Jiang L, Wang J, Zou W (2017) mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ 24:1886–1899. https://doi.org/10.1038/cdd.2017.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  CAS  Google Scholar 

  26. Javed A, Barnes GL, Jasanya BO, Stein JL, Gerstenfeld L, Lian JB, Stein GS (2001) runt homology domain transcription factors (Runx, Cbfa, and AML) mediate repression of the bone sialoprotein promoter: evidence for promoter context-dependent activity of Cbfa proteins. Mol Cell Biol 21:2891–2905

    Article  CAS  Google Scholar 

  27. Sato M, Morii E, Komori T, Kawahata H, Sugimoto M, Terai K, Shimizu H, Yasui T, Ogihara H, Yasui N, Ochi T, Kitamura Y, Ito Y, Nomura S (1998) Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17:1517–1525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by Natural Science Foundation of China (81872681, 31401079 and 81473046), the Science and Technology Project of Suzhou (SS202050, SYS2019024), the QingLan Project of Higher Education of Jiangsu Province and a Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

F-YD and S-FL designed and coordinated the study; PH, FJ and L-FW performed the experiments; PH, FJ, and XZ analyzed the data; PH and FJ drafted the manuscript; F-YD revised and finalized the manuscript.

Corresponding author

Correspondence to Fei-Yan Deng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4292_MOESM1_ESM.tif

Supplementary file1 (TIF 9760 kb) Supplemental Figure 1. Homologous recombination. A: Vector plasmid used in stable transfection. B: PCR electrophoresis of recombinant plasmids. C: Sequencing results of wild and variant type recombinant plasmids

Supplementary file2 (DOC 33 kb)

Supplementary file3 (DOC 22 kb)

Supplementary file4 (DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Jiang, F., Wu, LF. et al. Why SNP rs3755955 is associated with human bone mineral density? A molecular and cellular study in bone cells. Mol Cell Biochem 477, 455–468 (2022). https://doi.org/10.1007/s11010-021-04292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04292-1

Keywords

Navigation