Skip to main content
Log in

Therapeutic potential of Smilax fluminensis ethanolic extract: antitumoral activity in murine melanoma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the in vitro and in vivo antitumor activity of leaves ethanol extract from Smilax fluminensis on murine melanoma. The extract was performed by ethylic alcohol and submitted to classical chemical analysis. Cytotoxicity test were performed on neoplastic cells, where antitumor activity was expressed in GI50 (concentration that inhibits 50% of cell growth) and the determination of selectivity index using a normal cell line. In addition, BALB/c mice models were used to evaluate the in vivo antitumor activity of extract in two different concentrations against B16-F10 melanoma cells. The tumor inhibition ratio was determined and the histopathological analyses of nodules and liver were compared. The chemical analysis indicated a major presence of phenolic compounds and flavonoids. Cytotoxicity test results that S. fluminensis extract was active in B16-F10 line (GI50: 4.37 µg/mL), being the extract considered a promising antineoplastic agent. In the experimental model, the inhibition percentage of tumoral growth was between 78.77 and 83.49%. Histopathology analysis of nodules showed necrotic cells reduction, adipocytes presence, melanin deposition, vascularization, and inflammatory process in a concentration-dependent manner. On the liver, the animals treated with the extract on both concentrations showed normal hepatic organization, normal hepatocytes, and absence of inflammatory focus. The results indicate that S. fluminensis extract demonstrated both in vitro and in vivo antitumor activity, reducing the tumoral growth in B16-F10 and could therefore be a promising antineoplastic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Imran A, Qamar HY, Ali Q, Naeem H, Riaz M, Amin S et al (2017) Role of molecular biology in cancer treatment: a review article. Iran J Public Health 46(11):1475–1485

    PubMed  PubMed Central  Google Scholar 

  2. INCA-Instituto Nacional de Câncer: Estimativas da incidência e mortalidade por câncer no Brasil (2020) Available at https://www.inca.gov.br/tipos-de-cancer/cancer-de-pele-melanoma. Accessed on 18 Apr 2020

  3. Holmes D (2014) The cancer that rises with the Sun. Nature 515(7527):S110–S111

    Article  Google Scholar 

  4. Ibrahim N, Haluska FG (2009) Molecular pathogenesis of cutaneous melanocytic neoplasms. Ann Diagn Pathol 4:551–579

    CAS  Google Scholar 

  5. Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A et al (2018) Melanoma. Lancet 392(10151):971–984

    Article  Google Scholar 

  6. Bergman PJ, Kent MS, Farese JP (2013) Melanoma. Withrow & MacEwen’s—small animal clinical oncology. Elsevier, St. Louis, pp 321–331

    Chapter  Google Scholar 

  7. Rebecca VW, Sondak VK, Smalley KS (2012) A brief history of melanoma: from mummies to mutations. Melanoma Res 22(2):114–122

    Article  Google Scholar 

  8. Zhang QY, Wang FX, Jia KK, Kong LD (2018) Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front Pharmacol 9:1253

    Article  CAS  Google Scholar 

  9. Turcotte LM, Liu Q, Yasui Y, Arnold MA, Hammond S, Howell RM et al (2017) Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970–2015. JAMA 317(8):814–824

    Article  Google Scholar 

  10. Sanders K, Moran Z, Shi Z, Paul R, Greenlee H (2016) Natural products for cancer prevention: clinical update 2016. Semin Oncol Nurs 32(3):215–240

    Article  Google Scholar 

  11. Medeiros MFT, Senna-valle L, Andreata RHP (2007) Histórico e o uso da “salsa parrilha” (Smilax spp.) pelos boticários no Mosteiro de São Bento. Rev Bras Biociênc 5:27–29

    Google Scholar 

  12. Lorenzi H (2002) Plantas medicinais no Brasil: nativas e exóticas cultivadas. Instituto Plantarum, Nova Odessa

    Google Scholar 

  13. Lee SE, Ju EM, Kim JH (2001) Free radical scavenging and antioxidant enzyme fortifying activities of extracts from Smilax china root. Exp Mol Med 33:263–268

    Article  CAS  Google Scholar 

  14. Cox SD, Jayasinghe KC, Markham JL (2005) Antioxidant activity in Australian native sarsaparilla (Smilax glyciphylla). J Ethnopharmacol 101:162–168

    Article  Google Scholar 

  15. Xu J, Li X, Zhang P, Li ZL, Wang Y (2005) Antiinflammatory constituents from the roots of Smilax bockii warb. Arch Pharmacal Res 28(4):395–399

    Article  CAS  Google Scholar 

  16. Soares AN, Novembre ADLC, Martins AR, Piedade SMS, Appezzato-da-Gloria B (2011) Propagation studies in Smilax fluminensis Steud. (Smilacaceae). Ciencia Rural 41(10):1762–1768

    Article  Google Scholar 

  17. Petrica EEA, Sinhorin AP, Sinhorin VDG, Júnior GMV (2014) First phytochemical studies of japecanga (Smilax fluminensis) leaves: flavonoids analysis. Rev Bras 24:443–445

    CAS  Google Scholar 

  18. Matos JFA (2010) Introdução a fitoquímica experimental, 3rd edn. Edicoes UFC, Fortaleza

    Google Scholar 

  19. Simões CMO, Schenkel EP, Mello JCP, Mentz LA, Petrovick PR (2017) Farmacognosia: do produto natural ao medicamento. Artmed Editora, Porto Alegre

    Google Scholar 

  20. Marston A (2007) Role of advances in chromatographic techniques in phytochemistry. Phytochemistry 68:2785–2797

    Article  Google Scholar 

  21. Zeraik ML, Yariwake JH (2010) Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchem J 96(1):86–91

    Article  CAS  Google Scholar 

  22. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  Google Scholar 

  23. Suffness M, Pezzuto JM (1991) Assays for Bioactivity. In: Hostettmann K (ed) Methods in plant biochemistry. Academic Press, London

    Google Scholar 

  24. Vijayalakshmi A, Ravichandiran V, Malarkodi V, Nirmala S, Jayakumari S (2012) Screening of flavonoid “quercetin” from the rhizome of Smilax china Linn. for anti-psoriatic activity. Asian Pac J Trop Biomed 2(4):269–275

    Article  CAS  Google Scholar 

  25. Gomes-Neto A, Pessoa BBGP, Aguiar AS, Furtado BM, Moraes MO, Ribeiro RA (2002) Modelo de tumor de pulmão em rato com o carcinossarcoma de Walker. Acta Cir Bras 17(1):12–22

    Article  Google Scholar 

  26. Itharat A, Houghton PJ, Eno-Amooquaye E, Burke PJ, Sampson JH, Raman A (2004) In vitro cytotoxic activity of thai medicinal plants used traditionally to treat cancer. J Ethnopharmacol 90(1):33–38

    Article  Google Scholar 

  27. Petrica EEA (2012) Análise de flavonóides por cromatografia líquida de alta eficiência (CLAE), com ensaios in vitro do potencial antioxidante em folhas de Smilax fluminensis Steud. (Smilacacea). Dissertação, Universidade Federal de Mato Grosso

  28. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 5(3):93

    Article  CAS  Google Scholar 

  29. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280:5636–5645

    Article  CAS  Google Scholar 

  30. Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK (2013) Bauhinia variegate leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. Biomed Res Int 2013:915436

    PubMed  PubMed Central  Google Scholar 

  31. Ahmed SI, Hayat MQ, Tahir M, Mansoor Q, Ismail M, Keck K et al (2016) Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern Med 16:460

    Article  Google Scholar 

  32. Danciu C, Vlaia L, Fetea F, Hancianu M, Coricovac DE, Ciurlea SA et al (2015) Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biol Res 48:1

    Article  Google Scholar 

  33. Chaabane F, Pinon A, Simon A, Ghedira K, Chekir-Ghedira L (2014) Chloroform leaf extract of Daphne gnidium inhibits growth of melanoma cells and enhances melanogenesis of B16–F0 melanoma. S Afr J Bot 90:80–86

    Article  Google Scholar 

  34. Fonseca JC, Barbosa MA, Silva ICA, Duarte-Almeida JM, Castro AHF, dos Santos Lima LAR (2017) Antioxidant and allelopathic activities of Smilax brasiliensis Sprengel (Smilacaceae). S Afr J Bot 111:336–340

    Article  CAS  Google Scholar 

  35. Ozsoy N, Can A, Yanardag R, Akev N (2008) Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem 110(3):571–583

    Article  CAS  Google Scholar 

  36. Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q (2010) Cytotoxic polyphenols against breast tumor cell in Smilax china L. J Ethnopharmacol 130(3):460–464

    Article  CAS  Google Scholar 

  37. Bednarczuk VO, Verdam MCS, Miguel MD, Miguel OG (2010) Teste in vitro e in vivo utilizados na triagem toxicológica de produtos naturais. Visão Acadêmica 11(2):43–50

    Article  CAS  Google Scholar 

  38. Matsuda H, Yoshida K, Miyagawa K, Nemoto Y, Asao Y, Yoshikawa M (2006) Nuphar alkaloids with immediately apoptosis-inducing activity from Nuphar pumilum and their structural requirements for the activity. Bioorg Med Chem Lett 16(6):1567–1573

    Article  CAS  Google Scholar 

  39. Uscanga-Palomeque AC, Zapata-Benavides P, Saavedra-Alonso S, Zamora-Ávila DE, Franco-Molina MA, Arellano-Rodríguez M et al (2019) Inhibitory effect of Cuphea aequipetala extracts on murine B16F10 melanoma in vitro and in vivo. BioMed Res Int 2019:1–11

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT MS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias.

Funding

This study was supported by Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT MS) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Z. Fetter.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

This article contains studies with animals approved by Ethics Committee on the Use of Animals (CEUA) under registration 945/2018.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetter, B.Z., Dourado, D.M., Bogo, D. et al. Therapeutic potential of Smilax fluminensis ethanolic extract: antitumoral activity in murine melanoma cells. Mol Cell Biochem 477, 181–189 (2022). https://doi.org/10.1007/s11010-021-04272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04272-5

Keywords

Navigation